Satellite Module Layout Design Based on Adaptive Bee Evolutionary Genetic Algorithm

2014 ◽  
Vol 538 ◽  
pp. 193-197
Author(s):  
Jian Jiang Su ◽  
Chao Che ◽  
Qiang Zhang ◽  
Xiao Peng Wei

The main problems for Genetic Algorithm (GA) to deal with the complex layout design of satellite module lie in easily trapping into local optimality and large amount of consuming time. To solve these problems, the Bee Evolutionary Genetic Algorithm (BEGA) and the adaptive genetic algorithm (AGA) are introduced. The crossover operation of BEGA algorithm effectively reinforces the information exploitation of the genetic algorithm, and introducing random individuals in BEGA enhance the exploration capability and avoid the premature convergence of BEGA. These two features enable to accelerate the evolution of the algorithm and maintain excellent solutions. At the same time, AGA is adopted to improve the crossover and mutation probability, which enhances the escaping capability from local optimal solution. Finally, satellite module layout design based on Adaptive Bee Evolutionary Genetic Algorithm (ABEGA) is proposed. Numerical experiments of the satellite module layout optimization show that: ABEGA outperforms SGA and AGA in terms of the overall layout scheme, enveloping circle radius, the moment of inertia and success rate.

2015 ◽  
Vol 713-715 ◽  
pp. 1579-1582
Author(s):  
Shao Min Zhang ◽  
Ze Wu ◽  
Bao Yi Wang

Under the background of huge amounts of data in large-scale power grid, the active power optimization calculation is easy to fall into local optimal solution, and meanwhile the calculation demands a higher processing speed. Aiming at these questions, the farmer fishing algorithm which is applied to solve the problem of optimal distribution of active load for coal-fired power units is used to improve the cloud adaptive genetic algorithm (CAGA) for speeding up the convergence phase of CAGA. The concept of cloud computing algorithm is introduced, and parallel design has been done through MapReduce graphs. This method speeds up the calculation and improves the effectiveness of the active load optimization allocation calculation.


2013 ◽  
Vol 321-324 ◽  
pp. 2137-2140 ◽  
Author(s):  
Bing Chang Ouyang

Considering discrete demand and time-vary unit production cost under a foreseeable time horizon, this study presents an adaptive genetic algorithm to determine the production policy for one manufacturer supplying single item to multiple warehouses in a supply chain environment. Based on Distribution Requirement Planning (DRP) and Just in Time (JIT) delivery policy, we assume each gene in chromosome represents a period. Standard GA operators are used to generate new populations. These populations are evaluated by a fitness function using the total cost of production scheme. An explicit procedure for obtaining the local optimal solution is provided.


2012 ◽  
Vol 457-458 ◽  
pp. 616-619
Author(s):  
Shun Cheng Fan ◽  
Jin Feng Wang

In this paper, we analyze the characteristics of the flexible job-shop scheduling problem(FJSP). A novel genetic algorithm is elaborated to solve the FJSP. An improved chromosome representation is used to conveniently represent a solution of the FJSP. Initial population is generated randomly. The relevant selection, crossover and mutation operation is also designed. It jumped from the local optimal solution, and the search area of solution is improved. Finally, the algorithm is tested on instances of 4 jobs and 6 machines. Computational results prove the proposed genetic algorithm effective for solving the FJSP.


2012 ◽  
Vol 616-618 ◽  
pp. 2210-2213
Author(s):  
Li Jun Chen ◽  
Ran Ran Hai ◽  
Ya Hong Zhang ◽  
Gang Gang Xu

Reactive power optimization is a typical high-dimensional, nonlinear, discontinuous problem. Traditional Genetic algorithm(GA) exists precocious phenomenon and is easy to be trapped in local minima. To overcome this shortcoming, this article will introduce cloud model into Adaptive Genetic Algorithm (AGA), adaptively adjust crossover and mutation probability according to the X-condition cloud generator to use the randomness and stable tendency of droplets in cloud model. The article proposes the cloud adaptive genetic algorithm(CAGA) ,according to the theory, which probability values have both stability and randomness, so, the algorithm have both rapidity and population diversity. Considering minimum network loss as the objective function, make the simulation in standard IEEE 14 node system. The results show that the improved CAGA can achieve a better global optimal solution compared with GA and AGA.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Kun Hao ◽  
Jiale Zhao ◽  
Beibei Wang ◽  
Yonglei Liu ◽  
Chuanqi Wang

An adaptive genetic algorithm based on collision detection (AGACD) is proposed to solve the problems of the basic genetic algorithm in the field of path planning, such as low convergence path quality, many iterations required for convergence, and easily falling into the local optimal solution. First, this paper introduces the Delphi weight method to evaluate the weight of path length, path smoothness, and path safety in the fitness function, and a collision detection method is proposed to detect whether the planned path collides with obstacles. Then, the population initialization process is improved to reduce the program running time. After comprehensively considering the population diversity and the number of algorithm iterations, the traditional crossover operator and mutation operator are improved, and the adaptive crossover operator and adaptive mutation operator are proposed to avoid the local optimal solution. Finally, an optimization operator is proposed to improve the quality of convergent individuals through the second optimization of convergent individuals. The simulation results show that the adaptive genetic algorithm based on collision detection is not only suitable for simulation maps with various sizes and obstacle distributions but also has excellent performance, such as greatly reducing the running time of the algorithm program, and the adaptive genetic algorithm based on collision detection can effectively solve the problems of the basic genetic algorithm.


2011 ◽  
Vol 268-270 ◽  
pp. 1138-1143
Author(s):  
Hong Ying Qin

This paper concerns an improved adaptive genetic algorithm, and the method is applied to the Maximum Entropy Template Selection Algorithm image registration. This method includes adjusting the probability of crossover and mutation in the evolutionary process. The method can overcome the disadvantage of traditional genetic algorithm that is easy to get into a local optimum answer. Results show our method is insensitive to the ordering, rotation and scale of the input images so it can be used in image stitching and retrieval of images & videos.


2013 ◽  
Vol 760-762 ◽  
pp. 1690-1694
Author(s):  
Jian Xia Zhang ◽  
Tao Yu ◽  
Ji Ping Chen ◽  
Ying Hao Lin ◽  
Yu Meng Zhang

With the wide application of UAV in the scientific research,its route planning is becoming more and more important. In order to design the best route planning when UAV operates in the field, this paper mainly puts to use the simple genetic algorithm to design 3D-route planning. It primarily introduces the advantages of genetic algorithm compared to others on the designing of route planning. The improvement of simple genetic algorithm is because of the safety of UAV when it flights higher, and the 3D-route planning should include all the corresponding areas. The simulation results show that: the improvement of simple genetic algorithm gets rid of the dependence of parameters, at the same time it is a global search algorithm to avoid falling into the local optimal solution. Whats more, it can meet the requirements of the 3D-route planning design, to the purpose of regional scope and high safety.


2013 ◽  
Vol 365-366 ◽  
pp. 165-169
Author(s):  
Jing Sheng Yu ◽  
Li Li ◽  
Ting Liu

The genetic algorithm applied to switch electrical appliances electric arc feature extraction, based on genetic algorithm, the switch electrical arc feature extraction model was established. The initial pool formation, evaluation individual, reproduction, crossover and mutation have done a detailed representation. This model can eliminate the slow convergence and so easy to fall into the local minimum shortcomings of BP neural network computing graphics weights. The experiment showed that genetic algorithm can better converge to the global optimal solution, more in line with the arc Feature Extraction fact, and more effectively improving the quality of graphics extraction.


2013 ◽  
Vol 753-755 ◽  
pp. 2925-2929
Author(s):  
Xiao Chun Zhu ◽  
Jian Feng Zhao ◽  
Mu Lan Wang

This paper studies the scheduling problem of Hybrid Flow Shop (HFS) under the objective of minimizing makespan. The corresponding scheduling simulation system is developed in details, which employed a new encoding method so as to guarantee the validity of chromosomes and the convenience of calculation. The corresponding crossover and mutation operators are proposed for optimum sequencing. The simulation results show that the adaptive Genetic Algorithm (GA) is an effective and efficient method for solving HFS Problems.


Author(s):  
Dinita Rahmalia ◽  
Teguh Herlambang ◽  
Thomy Eko Saputro

Background: The applications of constrained optimization have been developed in many problems. One of them is production planning. Production planning is the important part for controlling the cost spent by the company.Objective: This research identifies about production planning optimization and algorithm to solve it in approaching. Production planning model is linear programming model with constraints : production, worker, and inventory.Methods: In this paper, we use heurisitic Particle Swarm Optimization-Genetic Algorithm (PSOGA) for solving production planning optimization. PSOGA is the algorithm combining Particle Swarm Optimization (PSO) and mutation operator of Genetic Algorithm (GA) to improve optimal solution resulted by PSO. Three simulations using three different mutation probabilies : 0, 0.01 and 0.7 are applied to PSOGA. Futhermore, some mutation probabilities in PSOGA will be simulated and percent of improvement will be computed.Results: From the simulations, PSOGA can improve optimal solution of PSO and the position of improvement is also determined by mutation probability. The small mutation probability gives smaller chance to the particle to explore and form new solution so that the position of improvement of small mutation probability is in middle of iteration. The large mutation probability gives larger chance to the particle to explore and form new solution so that the position of improvement of large mutation probability is in early of iteration.Conclusion: Overall, the simulations show that PSOGA can improve optimal solution resulted by PSO and therefore it can give optimal cost spent by the company for the  planning.Keywords: Constrained Optimization, Genetic Algorithm, Linear Programming, Particle Swarm Optimization, Production Planning


Sign in / Sign up

Export Citation Format

Share Document