Synthesis of N-(3-Rosin Acyloxy-2-Hydroxyl) Propyl-N,N Diethanolamine and its Anti-Fungal Activity

2011 ◽  
Vol 280 ◽  
pp. 124-127 ◽  
Author(s):  
Tao Liang ◽  
Shuang Yue Li ◽  
Shu Jun Li ◽  
Li Jun Zhang

Rosin was used as a raw material to prepare N-(3-rosin acyloxy-2-hydroxyl) propyl-N,N diethanolamine. First, rosin was modified with epoxy chloropropane. Then the modified rosin reacted with diethanolamine and N-(3-rosin acyloxy-2-hydroxyl) propyl-N, N diethanolamine was produced under the following conditions: modified rosin and diethanolamine mole ratio of 1:2, reaction temperature of 78°C, and reaction time of 2.5 h. The chemical structure of the product as a rosin amide derivative was identified by Fourier transform infrared spectroscopy (FTIR) and liquid chromatography-mass spectrometry (LC-MS) method. The anti-fungal activity of this rosinyl tertiary amine was determined in vitro against wood decay fungi, Trametes versicolor, Gloeophyllum trabeum and mould fungi, Aspergillus niger and Paecilomyces variot Bainier. The anti-fungal experiment results signified that N-(3-rosin acyloxy-2-hydroxyl) propyl-N,N diethanolamine was active to these fungi at a certain concentration.

2010 ◽  
Vol 113-116 ◽  
pp. 2232-2236 ◽  
Author(s):  
Jian Li ◽  
Shuang Yue Li ◽  
Shu Jun Li ◽  
Jing Wang ◽  
Dan Liu

Rosin was used as raw material to prepare a rosin amide derivative. First, rosin was modified by acrylic acid with the weight ratio of 4.5:1. Then the modified rosin was reacted with diethyltriamine and the rosin amide derivative was produced under the following conditions: modified rosin and diethyltriamine mole ratio of 1:3.5, dimethylbenzene as water carrying agent, reaction temperature of 160-180 °C, and reaction time of 8h. The chemical structure of the product as a rosin amide derivative was identified by Fourier transform infrared spectroscopy, electrospray ionization-mass spectrometry, and 1H nuclear magnetic resonance analysis. The anti-fungal activity of the derivative was determined in vitro with wood decay fungi such as Aspergillus niger, Paecilomyces variotii, Trametes versicolor and Gloeophyllum trabeum. The anti-fungal experiment results signified that the derivative is active vs. these fungi, but less effective with Aspergillus niger. Since it is produced easily from rosin, which is renewable and not expensive, this rosin amide could be a potential wood preservative.


2012 ◽  
Vol 485 ◽  
pp. 413-416 ◽  
Author(s):  
Li Jun Zhang ◽  
Yuan Yuan Zhang ◽  
Shu Jun Li ◽  
J.J. Karchesy

Cupressus macrocarpa (Monterey cypress) heartwood has natural durability. The heartwood oil was prepared by steam distillation and its anti-fungal activity was tested against four wood decay fungi, i.e. Trametes versicolor, Irpex lacteus, Gloeophyllum trabeum, and Postia placenta with a filter paper disc method. The oil was active against all these fungi at the concentration of 8 mg.mL-1 or greater, but Postia placenta was the most difficult for the oil to inhibit. GC-MS was adopted to analyze the components of the heartwood oil. Two components, 4-terpineol and carvacrol were identified and carvacrol represented 94.428% of the oil. The oil had anti-fungal activity mostly because of carvacrol in the high content


2005 ◽  
Vol 58 (1) ◽  
pp. 21 ◽  
Author(s):  
Jenny M. Carr ◽  
Peter J. Duggan ◽  
David G. Humphrey ◽  
Edward M. Tyndall

The borate ester, tetra-n-butylammonium bis(ortho-hydroxymethylphenolato)borate, NBu4[B(o-hmp)2], was synthesized and characterized by NMR spectroscopy (1H, 13C, 11B), ES-MS, and X-ray crystallography. The anti-fungal activity of this compound, as well as its sodium salt, the parent phenol, tetra-n-butylammonium bromide, and boric acid were evaluated against two wood decay fungi. The tetraalkylammonium borate NBu4[B(o-hmp)2] shows the highest activity out of the compounds examined. This finding suggests that the formation of lipophilic borate esters is a promising approach for the development of leach-resistant, borate-based wood preservatives.


2010 ◽  
Vol 113-116 ◽  
pp. 2197-2200 ◽  
Author(s):  
Shuang Yue Li ◽  
Jing Wang ◽  
Shu Jun Li ◽  
Zhi Jun Chen ◽  
Bing Tian ◽  
...  

An anti-fungal derivative of rosin was synthesized. First, rosin was modified by acrylic acid and the modified rosin was esterified by epoxy chloropropane with the mole ratio of 1:3 for 3.5h at 90°C. The intermediate was bis 3-rosin acyloxy-2- hydroxypropyl chlorine and the degree of esterification was 98.81%. Then, bisN-(3-rosin acyloxy-2-hydroxyl) propyl-N,N dimethylamine was made from the intermediate under the following conditions: the intermediate and dimethylamine mole ratio of 1:2, reaction temperature of 80°C and reaction time of 2.5h. The chemical structure of the product was identified by Fourier transform infrared spectroscopy (FTIR). The anti-fungal activity of the product was determined by paper-disc method with wood decay fungi such as Trametes versicolor, Gloeophyllum trabeum and wood stain fungi such as Aspergillus niger and Paecilomyces variot Bainier. The anti-fungal experiment results signified that bisN-(3-rosin acyloxy-2-hydroxyl) propyl-N, N dimethylamine is active vs. these fungi, but less effective with Aspergillus niger. Since it is produced easily from rosin, which is renewable and not expensive, this product has a promising future as a potential wood preservative.


1985 ◽  
Vol 63 (2) ◽  
pp. 337-339 ◽  
Author(s):  
Elmer L. Schmidt

Influences of eight saturated aliphatic acids (C5–C10, C12, and C16) on basidiospores of four isolates of wood-decay fungi (Poria tenuis and Trametes hispida, white rot fungi, and two isolates of the brown rot fungus Gloeophyllum trabeum) were observed in vitro. Spore responses after 24 h on malt extract agar containing 10, 102 or 103 ppm of each acid included normal germination, delay of germ tube emergence, vacuolation and degeneration of spore cytoplasm, and prevention of germ tube development without spore destruction. Acids of chain length C5–C10 prevented spore germination and killed spores of all fungi at concentrations of 20–50 ppm in media, whereas other acids tested were less active. Spore germination assay of decay fungi may prove useful as a screening tool to compare potency of wood preservatives.


2013 ◽  
Vol 8 (9) ◽  
pp. 1934578X1300800 ◽  
Author(s):  
Yu-Chang Su ◽  
Kuan-Ping Hsu ◽  
Eugene I-Chen Wang ◽  
Chen-Lung Ho

In this study, anti-mildew and anti-wood-decay fungal activities of the leaf and fruits essential oil and its constituents from Juniperus formosana were evaluated in vitro against seven mildew fungi and four wood decay fungi, respectively. The main compounds responsible for the anti-mildew and anti-wood-decay fungal activities were also identified. The essential oil from the fresh leaves and fruits of J. formosana were isolated using hydrodistillation in a Clevenger-type apparatus, and characterized by GC-FID and GC-MS, respectively. The leaf oil mainly consisted of α-pinene (41.0%), limonene (11.5%), α-cadinol (11.0%), elemol (6.3%), and β-myrcene (5.8%); the fruit oil was mostly α-pinene (40.9%), β-myrcene (32.4%), α-thujene (5.9%) and limonene (5.9%). Comparing the anti-mildew and anti-wood-decay fungal activities of the oils suggested that the leaf oil was the most effective. For the anti-mildew and anti-wood-decay fungal activities of the leaf oil, the active source compounds were determined to be α-cadinol and elemol.


2005 ◽  
Vol 58 (12) ◽  
pp. 901 ◽  
Author(s):  
Jenny M. Carr ◽  
Peter J. Duggan ◽  
David G. Humphrey ◽  
James A. Platts ◽  
Edward M. Tyndall

As part of a larger project aimed at the development of leach resistant boron-based wood preservatives, the anti-fungal and termiticidal activities, and the resistance to leaching from timber, of three related tetra-n-butylammonium spiroborates, tetra-n-butylammonium bis(ortho-hydroxymethylphenolato)borate 2, tetra-n-butylammonium bis[catecholato(2–)-O,O′]borate 3, and tetra-n-butylammonium bis[salicylato(2−)-O,O']borate 4, have been examined. All three borates are found to be active against test organisms, with the following orders of activity being observed: 2 > 3 > 4 > boric acid against wood decay fungi, and 2 > 3 ≈ 4 > boric acid against termites. The most active compound in both assays 2 also has the highest calculated lipophilicity. In a test for permanence in wood, the following order of leach resistance is observed: 4 >> 3 ≈ 2 > boric acid. This order appears to correlate more closely with the stability constants of the borate esters, as determined using 11B NMR spectroscopy, rather than calculated lipophilicities.


HortScience ◽  
2010 ◽  
Vol 45 (3) ◽  
pp. 401-408 ◽  
Author(s):  
Manuela Baietto ◽  
A. Dan Wilson

The development of wood decay caused by 12 major root-rot and trunk-rot fungi was investigated in vitro with sapwood extracted from nine ornamental and landscape hardwood and conifer species native to southern temperate regions of North America, Europe, and the lower Mississippi Delta. Wood decay rates based on dry weight loss for 108 host tree–wood decay fungi combinations were compared at 21 °C over 1-year and 2-year incubation periods in the absence of tree-resistance mechanisms. Strains of Armillaria mellea, Ganoderma lucidum, and Heterobasidion annosum exhibited the highest decay potential in most tree species tested. The order of fungi causing the greatest decay varied over time as a result of temporal changes in decay-rate curves. Relative wood durability or resistance to decay generally was greater in gymnosperm than in angiosperm wood types. Quercus nuttallii, Fraxinus pennsylvanica, and Quercus lyrata sustained the highest levels of decay by all fungi. Northern white cedar (Thuja occidentalis) sapwood was most resistant to decay by all rot-fungi tested, sustaining only limited weight loss after 1 and 2 years of decay, although sapwood of Pinus taeda, Liquidambar styraciflua, and Platanus occidentalis had relatively low levels of decay after 2 years. These results in combination with data from portable decay-detection devices provide useful information for the management of tree breakages or failures resulting from wood decay fungi in hazardous landscape trees. Some potential landscaping applications for tree evaluations, risk assessments, and selections for tree-replacement plantings are discussed.


2018 ◽  
Vol 94 (02) ◽  
pp. 109-116 ◽  
Author(s):  
Marta Aleksandrowicz-Trzcińska ◽  
Adam Szaniawski ◽  
Jacek Olchowik ◽  
Stanisław Drozdowski

Sign in / Sign up

Export Citation Format

Share Document