Finite Element Analysis on Thermal Characteristics of Lathe Motorized Spindle

2011 ◽  
Vol 311-313 ◽  
pp. 2434-2439 ◽  
Author(s):  
Ping Ma ◽  
Biao Zhou ◽  
Hai Peng Li

Abstract.High-speed motorized spindle is a promising technology widely used in high speed machining.The lathe motorized spindle is the key component of the high speed NC lathe and the thermal characteristics of the lathe motorized spindle is one of the major factors influencing the performance of the machine tools.In order to improve the accuracy and reliability of the high speed NC lathe,the thermal characteristic of the high speed NC motorized spindle has been studied in this paper.Firstly,the structure feature of the spindle has been introduced and two major internal heat sources of motorized spindle have been investigated.Secondly,the heat transfer coefficients of the major components of the lathe spindle have been conducted.Then,the 2D temperature field model has been developed with finite element method.Based on it, the temperature field and temperature rises of the spindle have been simulated and the reasonability of temperature distribution of the spindle unit has also been discussed.The research results provide the reference to evaluate of the thermal behavior of the high speed NC motorized spindle.

2013 ◽  
Vol 712-715 ◽  
pp. 1209-1212 ◽  
Author(s):  
Ke Zhang ◽  
Xiang Nan Ma ◽  
Li Xiu Zhang ◽  
Wen Da Yu ◽  
Yu Hou Wu

The article has analyzed the changes of temperature of different materials of the spindle, and considered 170SD30 Ceramic Motorized Spindle and the same model Metal Motorized Spindle as the research objects, analyzed the inside heat source and heat transfer mechanism of the high-speed motorized spindle; used finite element software to set up the model of the motorized spindle, and did simulation and analysis. Verified by simulation, heat transfer rate of ceramic materials is slower than the metallic materials, in actual operation of the process, due to different materials have different heat transfer rate, so the temperature distribution of the different materials of motorized spindle are different. This conclusion provides the basis to solve motorized spindle temperature field distribution.


2011 ◽  
Vol 52-54 ◽  
pp. 1206-1211 ◽  
Author(s):  
Huai Xing Wen ◽  
Mei Yan Wang

The thermal characteristics of the motorized spindle determines maching qualities and cutting capabilities, and is one of the important factors influencing the precision of the high speed NC machine tool. To improve the performance of the high speed machine tool, it is important to study the thermal characteristics of the motorized spindle. It had been studied in two ways: one is finite element analysis by Ansys software, in which the finite element analysis model was built. According to the actual working condition, the heat source and the heat transfer coefficient of every part are calculated. On this basis, the temperature field and temperature rises were gotten in Ansys software. The other way is temperature rises experiment on the motorized spindle test platform. The result was shown in the form of curve. These two ways shown the same result: the highest temperature rise appears in the area of electromotor, then followed by the rolling bearing .The result provides the necessary theory basis for optimizing the structure of the motorized spindle and establishes a basis for the research and application about the high speed spindle.


2007 ◽  
Vol 10-12 ◽  
pp. 258-262 ◽  
Author(s):  
Y. Lu ◽  
Ying Xue Yao ◽  
R.H. Hong

Motorized spindle is one of the core parts of high-speed machine tool, to a great extent, its thermal characteristics determine the thermal stress and thermal deformations, therefore the research on thermal characteristics is of great significance to increase the accuracy of high-speed machine tool. In this paper, the heat generation developed in the built-in motor and the bearings is calculated. The motorized spindle is modeled and its thermal characteristics analysis by finite element method is done using ANSYS software, in the foundation of analyzing its configuration and heat transfer. The variation regularity of its temperature-rise and temperature field is also summarized. Thereby it provides a powerful theoretical basis for reducing temperature–rise, calculating thermal deformations and improving working conditions.


2011 ◽  
Vol 291-294 ◽  
pp. 2302-2305 ◽  
Author(s):  
Yao Man Zhang ◽  
Qi Wei Liu ◽  
Jia Liang Han

The final manufacturing performances of the machine tools will be influenced by its thermal characteristics seriously and accurately predict thermal characteristic is helpful to improve the machine design level. Based on the analysis on factors that influence machine thermal characteristic, finite element analysis model of the headstock has been constructed, and the steady temperature field distribution and thermal equilibrium time calculation of the headstock are calculated, and then the temperature field and thermal deformation of the headstock under the action of heat and structure load have been calculated, and analysis to identify the trend of the spindle assembly and headstock heat distortion are also been done. The analysis reveals the machine processing performance influence will be influenced by the hot asymmetric, the study give priority to spindle assembly of optimization design, thermal error compensation.


2021 ◽  
Vol 13 (5) ◽  
pp. 168781402110208
Author(s):  
Yuan Zhang ◽  
Lifeng Wang ◽  
Yaodong Zhang ◽  
Yongde Zhang

The thermal deformation of high-speed motorized spindle will affect its reliability, so fully considering its thermal characteristics is the premise of optimal design. In order to study the thermal characteristics of high-speed motorized spindles, a coupled model of thermal-flow-structure was established. Through experiment and simulation, the thermal characteristics of spiral cooling motorized spindle are studied, and the U-shaped cooled motorized spindle is designed and optimized. The simulation results show that when the diameter of the cooling channel is 7 mm, the temperature of the spiral cooling system is lower than that of the U-shaped cooling system, but the radial thermal deformation is greater than that of the U-shaped cooling system. As the increase of the channel diameter of U-shaped cooling system, the temperature and radial thermal deformation decrease. When the diameter is 10 mm, the temperature and radial thermal deformation are lower than the spiral cooling system. And as the flow rate increases, the temperature and radial thermal deformation gradually decrease, which provides a basis for a reasonable choice of water flow rate. The maximum error between experiment and simulation is 2°C, and the error is small, which verifies the accuracy and lays the foundation for future research.


2011 ◽  
Vol 58-60 ◽  
pp. 198-204
Author(s):  
Feng Shou Zhang ◽  
Don Gyan Wang ◽  
Jian Ting Liu ◽  
Feng Kui Cui

Friction between the guideway and the bench of large-type CNC lathe will cause thermal deformation of the guideway, which causes processing error of the lathe,thereby reduces machining precision of the workpiece. The authors establish the mathematical model of temperature field and thermal deformation of the guideway in the work process, numerically simulate the guideway thermal characteristics by ANSYS finite element analysis software, and obtain the distribution regularities of temperature field and thermal deformation and their major influencing factors, which provide a theoretical basis for optimizing design and thermal error compensation design of the lathe guideway.


2019 ◽  
Vol 257 ◽  
pp. 02003
Author(s):  
Xiaolei Deng ◽  
Xinghui Zhang ◽  
Mucheng Zhang ◽  
Yibo Zhou ◽  
Huan Lin ◽  
...  

Based on the comprehensive analysis of the heat sources of the motorized spindle system, the thermal loads, including the heat generation of bearing friction and the electromagnetic loss of the built-in motor, are carried out for a machining center motorized spindle system. And then, the convective heat transfer coefficients of the whole spindle system are analyzed. The thermal characteristics of the motorized spindle system are calculated by finite element analysis. The steady state temperature field distribution of the motorized spindle is obtained. It provides some references for improving the thermal characteristics of the motorized spindle and reducing the difficulty of thermal error compensation.


2011 ◽  
Vol 228-229 ◽  
pp. 66-71
Author(s):  
Xiao Hong Lu ◽  
Zhen Yuan Jia ◽  
Zhi Cong Zhang ◽  
Xv Jia

The fixture of motorized spindle significantly affect the vibration of micro high speed CNC milling machine, its performance can directly affect the machining accuracy of the entire micro milling machine. A special fixture of high-speed motorized spindle is designed in the paper and its static characteristics are checked by utilizing ANSYS finite element analysis software. To guarantee the sufficient strength of bolts and the safety of motorized spindle when the motorized spindle runs at high speed, theory analysis method and ANSYS finite element analysis method are used to make the strength check of the fixture. The designed special fixture for high speed motorized spindle plays an important part in the design of high-speed motorized spindle.


2011 ◽  
Vol 215 ◽  
pp. 89-94 ◽  
Author(s):  
Jing Zhu Pang ◽  
Bei Zhi Li ◽  
Jian Guo Yang ◽  
Zhou Ping Wu

This paper presents the effects of spindle system configuration on the dynamic and static characteristics of high speed grinding. A 3D physical mode of high-speed grinding motorized spindle system with rotation speed of 150m/s was provided. The motorized spindle system consists of bearings, rotor, stator, spindle housing and grinding wheel. Based on the finite element method (FEM), the static characteristics, dynamic and the transient response are analyzed based on the finite element analysis software NASTRAN. It is shown that the spindle overhanging, bearing span have a significant effort on spindle deflection. The dynamic analysis shows no resonance will happen during its speed range. The methods and solutions for the motorized spindle system design and engineering applications was given in this paper.


Sign in / Sign up

Export Citation Format

Share Document