Fatigue Analysis of Locking Parts in the Gauge-Adjustable Wheelsets System Considering the Variation of the Fatigue Strength

2008 ◽  
Vol 33-37 ◽  
pp. 217-222 ◽  
Author(s):  
Chul Su Kim ◽  
Cheon Soo Jang ◽  
Seung Ho Jang ◽  
Jung Kyu Kim

To reduce the cost and time of transport due to the different track gauges(narrow, standard, broad) in the Eurasian railroad network such as TKR(Trans-Korea Railway), TCR(Trans-China Railway) and TSR(Trans-Siberia Railway), it is very necessary to develop and adapt the gauge-adjustable wheelsets system. The freight trains’ with gauge-adjustable system could operate on the different track gauges in the transcontinental railway. Therefore, to assure the safety of the newly developed gauge-adjustment wheelsets system, it is essential to evaluate integrity of locking parts in the system by using fatigue analysis. In this study, it was performed that contact stress analysis of locking parts by using FEM(Finite Element Method) in the case both the gauge changeover operation and freight trains' service in the curved track, respectively. Besides, to consider the variation of fatigue data, the crack initiation life was statistically evaluated.

2013 ◽  
Vol 816-817 ◽  
pp. 695-697
Author(s):  
Mei Huang ◽  
Hao Yuan ◽  
Juan Ma ◽  
J.N. Tang

In this article, finite element method is used to analyze the random vibration of the pressure vessel under the action of earthquake. The result shows that the maximum stress values are located at the bottom of the pressure vessel. At the same time, fatigue in this location has been analyzed. It can come to a conclusion that this pressure vessel meets the requirement of fatigue strength.


2013 ◽  
Vol 275-277 ◽  
pp. 189-192
Author(s):  
Wen Feng Tan ◽  
Tao Chen

Applied damage mechanics and coupled finite element method, to study the fatigue crack initiation life problem. Application of coupling finite element method, the damage coupling effect can be modified through the global stiffness matrix to achieve. The step length of the damage evolution is divided by the damage variable of the critical element, and then the damage evolution is analysised. The corresponding stiffness matrix and loading matrix can be obtained continually under the condition of increasing the damage evolution step of the critical element,then the equivalent stress can be calculated. The corresponding fatigue crack initiation life can be calculated by using the damage evolution equation, the progress will not stop until the damage degree of the critical element reaches to one. The fatigue crack initiation life is obtained by adding the fatigue crack initiation lives with different damage variable.


1996 ◽  
Vol 118 (2) ◽  
pp. 41-44 ◽  
Author(s):  
Z. Zhang ◽  
Daping Yao ◽  
J. K. Shang

A backface strain technique is introduced to examine fatigue crack initiation in solder lap joints. The technique detects the fatigue crack initiation by monitoring the backface strain at the end of the overlap. Variation of the backface strain with the development of a crack was simulated by finite element method. The simulation indicated that the backface strain at the end of the overlap reached a peak value when a fatigue crack initiated. Experimental verification was carried out in 63Sn-37Pb solder joints. The backface strain was recorded as a function of stress cycle to demonstrate the applicability of this technique. Experimental results showed that fatigue crack initiation took about half of the fatigue lifetime of the solder joints.


Author(s):  
Bartosz Łuczak ◽  
Bartosz Firlik ◽  
Tomasz Staśkiewicz ◽  
Wojciech Sumelka

In tram operations, flange wear is predominant due to the low-radius curves and inappropriate technical conditions of the infrastructure; hence, investigations should be focused on the interaction between the wheel flange and the rail gauge corner. Moreover, the calculation methods based on the Hertzian model (elliptic contact patch) provide less accurate results due to the contact occurrence in the wheel flange region. This paper presents a methodology of a finite element method to predict the tram wheel wear in complex motions. The new procedure is based on the Abaqus software and several other sub-procedures written in Python and Fortran. Multibody simulations were used to determine the wheel–rail alignment. In this method, accuracy was chosen at the expense of the computational effort. The main steps are: preparation of models and ride scenarios, multibody simulation for calculating the wheel–rail alignment for different track scenarios and multiple runs of finite element method analysis to determine the wear magnitude. The proposed methodology presents a good agreement with the measurements and can be considered as guidelines for a proper configuration of the flange-designing experimental setup where the influence of the technical conditions of the infrastructure should be introduced adequately.


2010 ◽  
Vol 156-157 ◽  
pp. 1415-1420
Author(s):  
Zhong Zheng ◽  
Hai Ou Zhang ◽  
Gui Lan Wang

In this article, a drawing die is researched in order to obtain the dynamic load and stress distributions and determine the potential fatigue location in it. The stress fields of the drawing die in the drawing process and their changing rules were studied through finite element method. The dynamic simulation of stress changing state has been realized, and the potential fatigue locations in the die were also determined. Based on the conclusion, the cavity die was divided into the substrate part and the wear-resistant part according to the stress distribution. Fatigue life estimations were made on the homogeneous die and the die with bi-materials. The example showed that bi-materials design can increase the service life while greatly reduces the cost of die material. The conclusions drawn conform to reality and have realistic significance.


2013 ◽  
Vol 712-715 ◽  
pp. 1027-1031
Author(s):  
Zhen Yu Liu ◽  
Ping Ping Zhang ◽  
Hu Zhen Wang ◽  
Xiang Rong Zhu

Aimed at deflection fracturing by oriented perforation, a two-dimensional, non-steady and two-phase Finite Element Method (FEM) is established. Taking a battery of wells in the inverted nine-spot rhombus pattern as object of study, it is reported that law of different crack initiation angle (CIA) affecting deflection fracturing. In the respect of daily oil production and cumulative oil production, the dual fracture with different CIA is more than straight fracture. So it is feasible to use deflection fracturing of oriented perforation to increase the production of the special low permeability oilfield. In contrast to dual fractures with different fracturing initiation angles, we can see that the wider CIA, the higher cumulative oil production. So we can draw such a conclusion that when deflection fracturing is implemented, angle should be increased if the working condition is permitted so as to increase the production of oil well.


1997 ◽  
Vol 119 (1) ◽  
pp. 104-112 ◽  
Author(s):  
Ming-Chuen Yip ◽  
Yi-Ming Jen

This paper discusses the mean strain effect on the crack initiation lives for notched specimens under biaxial nonproportional loading paths. Elastic-plastic finite element method was used to evaluate the local stresses and strains. Several prediction models related to the mean stress/strain effect were employed to correlate the experimental results with reference fatigue data for smooth specimens. It is found that Fatemi-Socie model gives good prediction for the present research with the assistance of finite element method. The stress behavior in this deflection-controlled tests is discussed in this study, and the failure surfaces are also examined after tests.


Author(s):  
John Draper

Modern fatigue analysis is providing analytical solutions to problems that could previously be addressed only by methods that were highly empirical and often inaccurate. We can now focus on five crucial steps to successful fatigue analysis. Working from elastic finite element models, the five steps are: 1) the calculation of elastic-plastic stresses and strains for complex loading and biaxial stress states; 2) modification of the endurance limit to allow for the interaction between small and larger cycles; 3) the calculation of the life to crack initiation; 4) critical plane searching to determine the orientation of a potential crack; 5) and an assessment of whether the crack will propagate to failure. The paper describes these steps and the underlying theories, and gives industrial examples of their application to real components.


Sign in / Sign up

Export Citation Format

Share Document