Mathematical Model and Dynamic Characteristics of Spiral-Style Super-Critical Steam Generator Used HTGR

2011 ◽  
Vol 347-353 ◽  
pp. 1678-1682
Author(s):  
Li Yu Dong ◽  
Zhi Wei Zhou ◽  
Yang Ping Zhou

Modular HTGR nuclear power plant because of inherent safety and high thermal efficiency shows good prospects for development. The current high-temperature reactor demonstration power plant (HTR-PM) using two thermal power of 250MW of modular HTGR with an electric power 211MWe turbine unit. As one development goals of multi-reactor with one turbine unit, millions of kilowatt nuclear power plant will use more reactor module and steam generator module more like demonstration power plant (HTR-PM) with 1000MWe supercritical turbine generator unit. spiral-style super-critical steam generator design, modeling is a key factor. Analyzing the structure and the characteristic of moderate spiral coil steam generator which is used in Modular HTGR demonstration power plant, from the mechanism of equipments, based on the law of quality conservation, energy conservation, momentum conservation, authors build up the full scope real time simulation mathematical model of super critical steam generator. The dynamic experiments of feed water disturbance, power disturbance, Helium flux disturbance are made on the basis of the model. The experiments show that the model of super critical steam generator has excellent dynamic characteristics.

Author(s):  
Wei Zhang ◽  
Guoqing Xia ◽  
Ming Ai ◽  
Minyu Fu ◽  
Hegao Cai

The mathematic models of reactor, once-through steam generator and turbine are built based on the mass, energy and momentum conservation theorem. Because of serious coupling and different dynamic characteristic, the coordinated control that solves big system problem is presented to apply into the nuclear power plant after researching deeply the variety feature and coupling relation of primary parameters of the nuclear power plant. The coordinated control system is filled with manage control, coordinated control and bottom controller. The simulation is processed by changing turbine load. Compared with non-coordinated control system, the coordinated control system improves briefly the dynamic feature of nuclear power plant. The fuzzy decoupled control strategy between once-through steam generator and turbine is proposed. The fuzzy decoupled frame including a compensator and design method of the decoupled compensator are given, the fuzzy rules are applied in the decoupled compensator. Finally, a fuzzy decoupled control system is designed in detail with a two inputs and two outputs’ system, which is applied in the coordinated control system of the nuclear power plant. The simulation results show that the coordinated control system based on the decoupled strategies is better than the coordinated control system, which weakens the couple connection, reduces the fluctuation of exit steam pressure by adjusting the feedwater flux.


2014 ◽  
Vol 644-650 ◽  
pp. 3616-3619
Author(s):  
Xu Hong Yang ◽  
Jian Yang ◽  
Ya Nan Wang ◽  
Yang Xue

Water level control of the steam generator is an important indicator of the safe operation of nuclear power plant. The traditional PID controller system has the disadvantages of large amount of overshoot, long adjusting time, etc. Steam generator has complex, nonlinear and time-varying characteristics. This article proposes the adopting the BP neural network intelligent control algorithm. The simulation experiments results indicated that: Comparing with traditional PID control it has smaller overshoot and shorter adjustment time, more ideal control effect c.


2005 ◽  
Vol 235 (23) ◽  
pp. 2477-2484 ◽  
Author(s):  
Seong Sik Hwang ◽  
Hong Pyo Kim ◽  
Joung Soo Kim ◽  
Kenneth E. Kasza ◽  
Jangyul Park ◽  
...  

Author(s):  
R. Z. Aminov ◽  
A. N. Bairamov

THE PURPOSE. System efficiency and competitiveness assess of a new scheme for combining a nuclear power plant with a hydrogen complex based on additional heating of feed water and superheating of live steam in front of the high-pressure cylinder of a steam turbine. METHODS. Basic laws of thermodynamics were applied when developing and substantiating a new scheme for combining a nuclear power plants (NPP) with a hydrogen facility; theoretical regularities were applied of heat engineering; basic regularity were applied of fatigue wear of power equipment and assessment of its working resourse; basic regularities were applied for the assessment of operating costs and net present value (NPV). RESULTS. A new scheme is presented of the combination of a nuclear power plant with a hydrogen facility and a description of its operating principle on the example of a two-circuit nuclear power plant with a VVER-1000 reactor and a C-1000-60 / 1500 turbine. The data are presented on an increase in the productivity of steam generators at nuclear power plants with additional heating of feed water in the range of 235-250 ° C from its nominal value of 230 ° C. The temperature was estimated of live steam superheat depending on the temperature of the additional heating of the feed water. The results are presented of the calculation of the generated peak power by the power unit and the efficiency of conversion of the night off-peak power of the NPP into peak power, as well as the efficiency of the power unit of the NPP depending on the temperature of additional heating of the feed water. Main regularities are given for taking into account the fatigue wear of the main equipment of the hydrogen facility, including the rotor of the NPP turbine in the conditions of the stress-cyclic operation. The results are presented of assessing the cost of peak electricity NPP in combination with a hydrogen facility in comparison with a pumped storage power plant (PSPP) both for the current period and for the future until 2035. CONCLUSION. Hydrogen facility efficiency and competitiveness depends significantly on the intensity of the use of the main equipment in the conditions of the intense-cyclic operation. The hydrogen facility will competitiveness noticeably increase in comparison with the PSPP in the future. Efficiency of the NPP power unit and NPV is highest when the feed water is heated to 235 ° C and superheating of live steam in front of the high-pressure cylinder of the C-1000-60/1500 turbine up to 470°C.The hydrogen facility competes with the PSPP with her specific capital investment at the level of 660 USD / kW, provided that the boosting capabilities of the turbine are used with live steam overheating at 300 ° C and additional heating of feed water to 235°C on the current period. The PSPP does not compete with the hydrogen facility both for the current period and in the future with her specific capital investment of $ 1,500 / kW and above.


2019 ◽  
pp. 119-126

Aplicación de la Teoría de Perturbación – Método Diferencial- al Análisis de Sensibilidad en Generadores de Vapor de Centrales Nucleares PWR-Caso Angra I Aplication of the Perturbation Theory- Differential Methodto Sensibility Análisis in PWR Nuclear Power Plant Steam Generator- Angra I Giol Sanders R, Andrade de Lima F, Marques A, Gallardo A, Bruna M, Zúñiga A Institución Peruano de Energía Nuclear Universidad Federal de Rio De Janeiro-Brasil DOI: https://doi.org/10.33017/RevECIPeru2011.0033/ RESUMEN En este trabajo basado en la tesis del Magíster Roberto Giol S. [1] presenta una aplicación del formalismo diferencial de la teoría de perturbación a un modelo termohidráulico homogéneo de simulación del comportamiento estacionario de uno de los generadores de vapor de la Central Nuclear tipo PWR Angra I del Brasil. Se desarrolla un programa de cálculo PERGEVAP tomando como base el código GEVAP de Souza[2]. El programa PERGEVAP permite realizar cálculos de sensibilidad de funcionales lineales (temperatura media del primario)y no lineales (flujo de calor medio a través de las paredes de los tubos del generador) con relación a las variaciones de ciertos parámetros termo-hidráulicos(flujo másico del primario, calor específico, etc), Los resultados obtenidos con este formalismo son luego comparados con los obtenidos del cálculo directo con el propio código GEVAP, pudiéndose verificar una excelente concordancia. Este método se muestra promisorio para efectuar cálculos repetitivos asociados al diseño y análisis de Seguridad de los componentes de las Centrales Nucleares. Descriptores: teoría de perturbación, método diferencial, sensibilidad, generador de vapor, central nuclear PWR. ABSTRACT This report presents an application of the differential approach of the perturbation theory to an homogeneous model of a PWR steam generator in the Angra 1 Nuclear Power Plan in Brazil under steady-state conditions. Program PERGEVAP was built fom the code GEVAP developed by Souza and allows sensitivity calculations of linear (average primary loop temperature) and non-linear (average heat flux) functionals due to variations in some thermo-hydraulics parameters (flow rate, specific heat, , etc). Results obtained with this approach are then compared with direct calculations performed using the GEVAP code, with excellent agreements. The method has good potential to treat repeated calculations needed in the design and safety analysis of the Nuclear Plant components. Keywords: perturbation theory, differential method, steam generator, PWR nuclear Power Plant.


Sign in / Sign up

Export Citation Format

Share Document