Dynamic Response Analysis of Large Wind Turbine Blade Based on Davenport Wind Speed Model

2011 ◽  
Vol 347-353 ◽  
pp. 2330-2336
Author(s):  
Jian Ping Zhang ◽  
Dong Liang Li ◽  
Yu Liu ◽  
He Len Wu ◽  
Jian Xing Ren ◽  
...  

Fluctuating wind speed spectrum, which is closer to the actual working conditions, was simulated by davenport wind speed model, and displacement and stress distribution of blade under fluctuating wind speed were calculated by finite element analysis software. The numerical results indicate that the growth trend of vibration amplitude for whole blade at flapping direction is nonlinear along the wingspan. The max von-mises stress appears when the vibration amplitude of tip reaches the maximum, and it is mainly concentrated in the central part of the blade. The stress at trailing edge and tip is smaller than the central part. Above results provide a reference for the strength safety design of wind turbine blade.,Fluctuating wind speed spectrum, which is closer to the actual working conditions, was simulated by davenport wind speed model, and displacement and stress distribution of blade under fluctuating wind speed were calculated by finite element analysis software. The numerical results indicate that the growth trend of vibration amplitude for whole blade at flapping direction is nonlinear along the wingspan. The max von-mises stress appears when the vibration amplitude of tip reaches the maximum, and it is mainly concentrated in the central part of the blade. The stress at trailing edge and tip is smaller than the central part. Above results provide a reference for the strength safety design of wind turbine blade.

Author(s):  
Ganesh Ram Ramanujam Karthikeyan ◽  
Akshan Paresh Mehta ◽  
Karthikeyan Ramanujam ◽  
Kalaichelvi Venkatesan

Aerodynamics of wind turbine blade is an important field of research. In the present study, a multi stage optimization process has been evaluated on a baseline wind turbine blade. Genetic Algorithms (GAs) are applied as a generative and search procedure to look for optimized design solutions in terms of aerodynamic performance of the airfoil selected for the study. The MatLab Genetic Algorithm toolbox interfaced with Xfoil, an interactive program for the design and analysis of airfoils, was implemented for the profile design optimisation. To analyse the performance of the optimized profile, the ANSYS Fluent toolbox was used to conduct the 3D computational fluid dynamics analysis of a section of the wind turbine blade before and after optimization. The total deformation and Von-Mises stress of the wind turbine blade caused due to Fluid-Structure Interaction is analysed using the ANSYS simulation software.


Author(s):  
Prenil Poulose ◽  
Zhong Hu

Strength evaluation and failure prediction on a modern composite wind turbine blade have been conducted using finite element analysis. A 3-dimensional finite element model has been developed. Stresses and deflections in the blade under extreme storm conditions have been investigated for different materials. The conventional wood design turbine blade has been compared with the advanced E-glass fiber and Carbon epoxy composite blades. Strength has been analyzed and compared for blades with different laminated layer stacking sequences and fiber orientations for a composite material. Safety design and failure prediction have been conducted based on the different failure criteria. The simulation error estimation has been evaluated. Simulation results have shown that finite element analysis is crucial for designing and optimizing composite wind turbine blades.


2020 ◽  
Vol 142 (10) ◽  
Author(s):  
Hamid Khakpour Nejadkhaki ◽  
John F. Hall

Abstract A control framework and integrative design method for an adaptive wind turbine blade is presented. The blade is adapted by actively transforming the twist angle distribution (TAD) along the blade. This can alleviate fatigue loads and improve wind capture. In this paper, we focus on wind capture. The proposed design concept consists of a rigid spar that is surrounded by a series of flexible blade sections. Each section has two zones of stiffness. The sections are actuated at each end to deform the TAD. A quasi-static control technique is proposed for the TAD. The controller sets the position of the blade actuators that shape the TAD during steady-state operation. A design procedure is used to define the required TAD as a function of the wind speed. This is based on an optimization procedure that minimizes the deviation between the actual TAD and that found in the aerodynamic design. The design inputs for this optimization problem include the stiffness for each zone of the section, and the actuator locations along the blade. Given the optimal TAD at each wind speed, the free position of the blade is established using a dynamic programming technique. The position is selected based on minimal actuation energy according to wind conditions at any installation site. The proposed framework is demonstrated using a National Renewable Energy Laboratory (NREL) certified wind turbine model with recorded wind data. An increase in efficiency of 3.8% with only a deviation of 0.34% from the aerodynamic TAD is observed.


2018 ◽  
Vol 217 ◽  
pp. 01003 ◽  
Author(s):  
Lee Zhou Yi ◽  
Choe-Yung Teoh

Wind turbines cannot simply be installed in Malaysia due to low wind speed condition. the project has analyzed the existing wind turbine blade (Aeolos-V 1k) design based on modal properties using computational approach (ANSYS Workbench) and redesign it. the modal analysis is simulated to observe natural frequency and corresponding mode shaped of the system under free vibration. the flow induced vibration can cause blade failure due to resonance or fatigue. Fluid Structural Interaction (FSI) ANSYS is used to the determined the interaction between the wind flow and the blade. Harmonic Response ANSYS is used to analyze the frequency response of the blade under wind induced vibration. After modification, the first mode has increased from 91.42 Hz to 102.12, since it is more than 50.92 Hz (Turbine maximum operating frequency), resonance would not occur during operating condition. the Aeolos-V’s blade has been modified by using. teak wood material and. redesign the blade for weight. reduction and aim for lower blade cost. the weight of modified blade has reduced 72.8 % after using teak wood and the efficiency of the wind turbine also increased. Modified design has been tested under Malaysia maximum wind speed of 9.44 m/s, the yield stress of teak wood (10.3 MPa) is higher than the maximum stress (4.2 MPa) obtained under force vibration which gives safety factor of 2.4. Hence, modified blade is reliable, efficient and more economic for Malaysia.


2011 ◽  
Vol 19 (3-4) ◽  
pp. 747-754 ◽  
Author(s):  
Yin-hu Qiao ◽  
Jiang Han ◽  
Chun-yan Zhang ◽  
Jie-ping Chen ◽  
Ke-chuan Yi

2014 ◽  
Vol 889-890 ◽  
pp. 221-224
Author(s):  
Gao Hua Liao ◽  
Jian Zhong Wu ◽  
Yong Jun Yu

According to the principle of equivalent, the approach to draw up the fatigue test loading spectrum of wind turbine blade is presented. Analysis of wind load characteristics, based on ARMA (Autoregressive Moving Average Model) for the simulation of wind speed, wind load simulation example is given. Using Bladed software, the wind speed-time history is converted to a moment-time history that is the equivalent of blade root.Using data compression technology and the rain flow counting algorithm, load represented by a 2D matrix examples is given.The one-dimensional symmetry loading spectrum draw up, the complexity can be simplified, and provides the necessary foundation for fatigue life analysis.


Author(s):  
Fateh Ferroudji ◽  
Cherif Khelifi ◽  
Farouk Meguellati ◽  
Khaled Koussa

Modeling and simulation of mechanical structures in development phase are fundamental to optimize and improve the stability and reliability of the final product as well as to reduce the cost of prototyping and testing. Wind turbines are subject to critical loading to the centrifugal force due to wind speed and gravitational force. The present study discusses three-dimensional numerical simulations of combined Darrieus-Savonius wind turbine D-SWT for applications in urban and isolated areas for lighting, pumping water, etc. The Darrieus turbine is used to produce wind power and the Savonius rotor to start the system. Finite Element Analysis (FEA) using SolidWorks 2015 is employed to generate the geometry of the structure and SolidWorks Simulation to investigate the stability and reliability static on the structure of the D-WST built by two types of material of the blade Galvanized Steel (GS) and Aluminum alloys 1060-H18 (ALU). Mechanical parameter of the structure are calculated for critical loading conditions, including the gravity and wind pressure loading due to the wind speed of 23m/s. Simulations results indicate no structural failure is predicted for all components of the D-SWT for both materials used according to Von Mises criterion stresses and the factors of safety of the most fragile material are greater than (the unity) 1. The maximum displacements found (3.84 & 6.81mm), occurred at the tip blades (free ends levels). These displacements are accepted relatively to the structure size.


Sign in / Sign up

Export Citation Format

Share Document