Measurement of Radial and Axial Error Motion in a High Precision Spindle

2011 ◽  
Vol 381 ◽  
pp. 34-37
Author(s):  
Xi Zhang ◽  
Sheng Bao ◽  
Fang Cheng

The performance of a spindle is critical for high precision machining. In this paper, the spindle error motion in a high precision milling center was measured. The spindle is driven by air turbine with rotation speed of 120,000rpm. The radial and axial error motion of the axis of rotation was measured. The capacitive displacement sensors with nanometer resolution were mounted against the master gauge pin through the dedicated setup. Tlusty method was adopted to synchronize angular position of the spindle and data sampling. The measured radial and axial error motion of the spindle were 2.73μm and 2.59μm respectively. Despite of motion errors, the better machining accuracy still can be achieved. It seems that cutting force may improve the rotation performance of a spindle with aerostatic bearing.

2021 ◽  
Author(s):  
Taiyong Wang ◽  
Libo Cao ◽  
Yongbin Zhang ◽  
Jingchuan Dong ◽  
Songhui Jia ◽  
...  

Abstract In the field of CNC machining, high-speed and high-precision machining has been regarded as the key research by many scholars. In conventional methods, high-speed machining and high-precision machining are contradictory. It is inevitable to reduce the feedrate to improve the processing accuracy. In the paper, a pre-compensation based on discrete inverse transfer function (PDIT) theory is proposed. PDIT is able to improve machining accuracy by reducing contour errors without decreasing feedrate. The proposed PDIT theory is divided into three parts, NURBS interpolator, feedrate scheduling, and interpolator with pre-compensation. The NURBS interpolator has greatly advantage to interpolate the parameter curve directly. Therefore, the paper adopts the NURBS interpolator to accomplish interpolation. In the feedrate scheduling, S-type flexible acceleration and deceleration are used for path planning, and the maximum starting feedrate is obtained with the feedrate constraint. In the interpolator with pre-compensation, the NURBS interpolator is pre-compensated by PDIT. For inputs, the response of transfer function reach steady-state response with a little time. Before reaching steady-state response, the unsteady response exists in the transfer function. The unsteady response usually sustains tens of interpolation periods and must be lead contour error in machining. Hence, the PDIT theory is employed to compensate the contour error causing by the unsteady response of transfer function to NURBS interpolator. The drive system is a transfer function, so the unsteady response of drive system cause machining errors before reaching the steady-state response. In the paper, the NURBS interpolator is pre-compensated by PDIT theory before the drive system to reduce contour errors and improve machining accuracy. Finally, the performance of the proposed PDIT is evaluated by simulation experiments. The experimental results illustrate that PDIT theory obviously improve the machining accuracy and reduces the contour error.


2020 ◽  
pp. 78-81
Author(s):  
B.Ya. Mokritskiy ◽  
D.A. Savinov ◽  
Ya.V. Konyuhova

The possibility of controlling the effectiveness of the cutting process taking into account the quality of replaceable inserts in high-precision machining of parts to prevent spindle imbalance and tool destruction with low quality of the inserts is considered. Keywords: cutting, replaceable insert, spindle, imbalance, machining accuracy. [email protected]


2019 ◽  
Vol 19 (19) ◽  
pp. 8626-8634 ◽  
Author(s):  
Hongji Pu ◽  
Hewen Wang ◽  
Xiaokang Liu ◽  
Zhicheng Yu ◽  
Kai Peng

2014 ◽  
Vol 543-547 ◽  
pp. 4698-4701
Author(s):  
Juan Wang

During the processing of aircraft and other high precision machinery workpieces, if using the traditional machining methods, it will consume a amount of machining costs, and the mechanical processing cycle is long. In this context, this paper designs a kind of robot intelligent processing system with high precision machinery. And it has realized the intelligent online control on the machining process by using the high precision machining intelligent online monitoring technology and the numerical simulation prediction technology. Finally, this system is introduced into the process of data mining for volleyball game, and designs the partial differential variational data mining model, which has realized the key parameter data mining of volleyball games service system, and has provided reliable parameters and technical support for the training of volleyball players.


2001 ◽  
Author(s):  
Som Chattopadhyay

Abstract Positioning accuracy within the range of nanometers is required for high precision machining applications. The implementation of such a range is difficult through the slides because of (a) irregular nature of friction at the slider-guideway interface, and (b) complex motion characteristic at very low speeds. The complexity arises due to the local deformation at the interface prior to breakaway, which is known as microdynamics. In this work prior experimental results exhibiting microdynamics have been appraised, and mathematical model developed to understand this behavior.


Sign in / Sign up

Export Citation Format

Share Document