Sensorless Control of SPMSM Based on High-Frequency Current Signal Injection in the Direct Axis at Low and Zero Speed

2011 ◽  
Vol 383-390 ◽  
pp. 2856-2861 ◽  
Author(s):  
Ying Feng ◽  
Bo Zhou ◽  
Ying Liu ◽  
Shuai Li

A novel sensorless control method of surface-mounted permanent magnet synchronous motor (SPMSM) based on high frequency (HF) current signal injection is proposed in this paper. A HF sinusoidal current signal is superimposed into the estimated d-axis, and the rotor position can be demodulated after q-axis voltage is regulated, which is relative to error angle. Ultimately sensorless control can be achieved. Theoretical analysis and simulation validation are carried out. The simulation results indicate that the rotor position and speed can be obtained exactly at low and zero speed. The approach ensures good dynamic and static performances, and can realize accurate position servo control.

2011 ◽  
Vol 143-144 ◽  
pp. 103-107
Author(s):  
Yu Dong Li ◽  
Xiao Wei Wang ◽  
Wei Hu

A novel sensorless control method of permanent magnet synchronous motor (PMSM) based on low frequency (LF) current signal injection is proposed in this paper. A LF sinusoidal current signal is superimposed into the estimated d-axis, and the corresponding voltage response and current response are detected to estimate the rotor speed and the rotor position. This method doesn't rely on the non-ideal features but just the fundamental model of PMSM. As a result, the introduced method can be applied to not only IPMSM, but also to SPMSM. Theoretical analysis and simulation results are carried out. The simulation results indicate that the rotor position and speed can be obtained exactly at low and zero speed. The approach ensures good dynamic and static performances, and can realize accurate position servo control.


2013 ◽  
Vol 722 ◽  
pp. 361-368
Author(s):  
Yu Dong Li ◽  
Bo Zhou ◽  
Ying Liu ◽  
Cheng Liang Zhao

Two current signal injection methods, the fluctuating high frequency (HF) current signal injection and low frequency (LF) current signal injection, were discussed. The basic principles of rotor position self-sensing using these current signal injection and the key techniques in implementation were presented and the simulation models for sensorless vector control systems of a permanent magnet synchronous motor (PMSM) were established using two proposed rotor position estimation methods. Comparative simulation study of the fluctuating HF current signal injection and LF current signal injection was investigated, and draw the conclusions that the saliency-tracking scheme using fluctuating HF current signal injection possesses simpler configuration and better speed-adjustable performance both in static and dynamic.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1919
Author(s):  
Lei Guo ◽  
Zhongping Yang ◽  
Fei Lin

In the applications of rail transit and electric vehicles, sensorless control of interior permanent magnet synchronous motor (IPMSM) usually uses high frequency (HF) signal injection in low speed or zero speed. Rotating HF signal injection based on the stationary reference frame can identify the rotor position, but its accuracy is easily affected by various nonlinearities of the control system and stator resistance. In this paper, the causes of rotor position estimation deviation are analyzed and deduced in detail. It is proposed that the rotor position estimation deviation can be divided into high frequency phase deviation (HFPD) and stator resistance phase deviation. On the basis of these analyses, a novel sensorless rotor position estimation strategy for IPMSM is proposed. This strategy can theoretically eliminate the HF phase deviation caused by the nonlinearity of the control system and reduce the phase deviation caused by the stator resistance. Although the factors that cause the estimation deviation of rotor position may change with the time and the operation status of the motor, the proposed strategy has the characteristics of online calculation and real-time compensation, which can improve the accuracy of the estimated rotor position. In addition, this paper provides a detailed theoretical derivation of resolving rotor position considering stator resistance and HF phase deviation. Finally, the result analysis on an IPMSM demonstrate the correctness of the theoretical analysis and the effectiveness of the strategy.


Sign in / Sign up

Export Citation Format

Share Document