Comparison between Mechanical and Thermal Properties of Polylactic Acid and Natural Rubber Blend Using Calcium Carbonate and Vetiver Grass Fiber as Fillers

2011 ◽  
Vol 410 ◽  
pp. 59-62 ◽  
Author(s):  
Punmanee Juntuek ◽  
Chaiwat Ruksakulpiwat ◽  
Pranee Chumsamrong ◽  
Yupaporn Ruksakulpiwat

From our previous study, natural rubber (NR) was used to improve toughness of poly (lactic acid) (PLA). Impact strength and elongation at break of PLA was increased when adding NR. Moreover, by using NR-g-GMA as compatibilizer for PLA and NR blend, impact strength and elongation at break was improved. However, tensile strength and modulus of PLA/NR blend with and without NR-g-GMA were decreased. In this study, calcium carbonate (CaCO3) and vetiver grass fiber were used as fillers in PLA/NR blend. With the addition of CaCO3 into PLA/NR blend with NR-g-GMA, impact strength and modulus of the composite were further increased with a loss in tensile strength. In contrast, the addition of vetiver grass fiber into PLA/NR blend with NR-g-GMA led to an increase in tensile strength and modulus and a decrease in impact strength and elongation at break. The onset degradation temperatures of PLA composites were lower than that of PLA and PLA/NR blend.

2015 ◽  
Vol 1125 ◽  
pp. 222-226 ◽  
Author(s):  
Mohd Shaiful Zaidi Mat Desa ◽  
Azman Hassan ◽  
Agus Arsad ◽  
Nor Nisa Balqis Mohammad

The effect of rubber toughening on mechanical and thermal properties of poly (lactic acid) (PLA) was investigated by using three types of rubbers; natural rubber (NR), epoxidized natural rubber (ENR) and core-shell rubber (CSR). The PLA/rubber blends were prepared by melt blending in a counter-rotating twin-screw extruder, where the rubber content for all blends was kept at 5 wt%. It was found that the addition of the rubbers increased the impact strength for all blends as compared to pure PLA. On the other hand, all PLA/rubber blends showed notable decrease of Young’s modulus especially for PLA/NR blend which decreased by 72% than pure PLA. Similarly, significant decrease of tensile strength was also observed for all PLA/rubber blends. PLA/ENR blend showed a morebalance mechanical properties with fairly significant improvement of impact strength and moderate decrease of tensile strength, Young’s modulus and elongation at break. In general, PLA/NR blend showed the highest overall impact strength, while the PLA/CSR showed the highest tensile strength and Young’s modulus among the blends. Thermal analysis revealed that the Tg of PLA decreased with incorporation of the three types of rubbers with NR showing the largest decrease. This study indicates that NR, ENR and CSR are effective in enhancing toughness of PLA


2019 ◽  
Vol 798 ◽  
pp. 279-284
Author(s):  
Pajaera Patanathabutr ◽  
Patiphan Soysang ◽  
Pakjira Leuang-On ◽  
Piyapon Kasetsupsin ◽  
Nattakarn Hongsriphan

This study was designed to evaluate properties of poly(lactic acid) (PLA) under the postulation that recycled PLA (rPLA) was contaminated with commodity thermoplastics during a typical density-based sorting. Change in clarity, mechanical, and thermal properties of the contaminated rPLA specimens were compared. Clarity of rPLA was reduced showing pale brownish tint when passing multiple processing. Contamination with either PP or HIPS just 1 phr caused rPLA to become opaque, which the transmittance percentage was decreased with respect to contamination content. Compared to pure PLA, the moduli of rPLA was reduced 2.6%. The moduli of rPLA was reduced 4.5-8.2% when contaminated with PP of 1-8 phr, and the moduli was reduced 1.4-4.1% when contaminated with HIPS of 1-8 phr. Elongation at break of PP-contaminated rPLA specimens was reduced with slight increase of impact strength. Elongation at break of HIPS-contaminated rPLA specimens was higher with higher HIPS content, and the impact strength was enhanced up to 64%.


RSC Advances ◽  
2017 ◽  
Vol 7 (73) ◽  
pp. 46183-46194 ◽  
Author(s):  
Jia Yang ◽  
Hongwei Pan ◽  
Xin Li ◽  
Shulin Sun ◽  
Huiliang Zhang ◽  
...  

PPCU was prepared by using PPC and polyols as the raw materials and diphenyl-methane-diisocyanate (MDI) as the extender chain. The impact strength and elongation at break of PLA were remarkably enhanced by blending with PPCU.


2014 ◽  
Vol 775-776 ◽  
pp. 24-28
Author(s):  
Taciana Regina de Gouveia Silva ◽  
Bartira Brandão da Cunha ◽  
Pankaj Agrawal ◽  
Edcleide Maria Araújo ◽  
Tomás Jefférson Alves de Mélo

In this work, the effect of the PCL content and E-GMA compatibilizer on the mechanical properties and morphology of poly (lactic acid) - PLA/ poly (ε-caprolactone)-PCL blends was investigated. The results of the mechanical properties showed that there was a reduction in the elastic modulus and tensile strength when PCL was added to PLA. The decrease in the modulus was more pronounced when the PCL content was increased from 10 to 20% (wt). The PLA/PCL/E-GMA blend showed the lower modulus and tensile strength. This blend also presented the higher elongation at break and impact strength. The morphology analysis by SEM showed that the PLA/PCL blends where characterized by lack of adhesion between the PLA and PCL phases. The presence of E-GMA in the PLA/PCL/E-GMA blend improved the adhesion between the PLA and PCL phases.Keywords: poly (latic acid); poly (ε-caprolactone); polymer blends; compatibilizer


2018 ◽  
Vol 789 ◽  
pp. 221-225
Author(s):  
Nattapol Dedruktip ◽  
Wasan Leelawanachai ◽  
Nuchnapa Tangboriboon

Alumina fiber is a ceramic material used as a dispersed phase or filler to reinforce the mechanical and improve thermal properties of natural rubber via vulcanization process at curing temperature 150°C. The amount of alumina fiber added in natural rubber was varied from 0 to 50 phr on 100 phr of natural rubber in a sulfur curing system. Adding 10 phr alumina fiber affects to obtain the best natural rubber composite samples having good mechanical and thermal properties. Tensile strength, elongation at break, Young’s modulus and thermal conductivity of adding 10 phr whisker alumina fiber encoded NR-Al-10 are equal to 14.38±1.95 MPa, 1038.4±41.45%, 545.63±25.67 MPa and 0.2376±0.0003 W/m.K, respectively, better than those of pure natural rubber compounds without adding alumina fiber. Tensile strength, elongation at break, Young’s modulus and thermal conductivity of natural rubber without adding alumina fiber are equal to 14.06±6.03 MPa, 949.41±52.15%, 496.32±8.54 MPa and 0.2500±0.0003 W/m.K, respectively.


2011 ◽  
Vol 410 ◽  
pp. 51-54 ◽  
Author(s):  
Arpaporn Teamsinsungvon ◽  
Yupaporn Ruksakulpiwat ◽  
Kasama Jarukumjorn

Poly (lactic acid) (PLA)/poly (butylene adipate-co-terephthalate) (PBAT) blend and its composite were prepared by melt blending method. Maleic anhydride grafted PLA (PLA-g-MA) prepared in-house was used as a compatibilizer to enhance the interfacial adhesion between PLA and PBAT and also to improve the dispersion of calcium carbonate (CaCO3) in polymer matrices. Increasing PBAT content (10-30 wt%) resulted in the improvement of elongation at break and impact strength of PLA. Tensile strength, Young’s modulus, and impact strength of PLA/PBAT blend improved with the presence of PLA-g-MA due to enhanced interfacial adhesion between PLA and PBAT. As CaCO3 (5 wt%) was incorporated into the compatibilized blend, tensile strength, Young’s modulus, and impact strength insignificantly changed while elongation at break decreased.


2018 ◽  
Vol 917 ◽  
pp. 3-6 ◽  
Author(s):  
Muhammad Haniff ◽  
Mohd Bijarimi ◽  
M.S. Zaidi ◽  
Ahmad Sahrim

PLA has limited applications due to its inherent brittleness, toughness and low elongation at break. One of the options for improvement is through blending with polyoxymethylene (POM). Melt blending of polylactic acid (PLA) and polyoxymethylene (POM) at 90/10 PLA/POM composition was carried out in a twin-screw extruder. The PLA/POM was loaded with 1 – 5 wt.% of nanoclay (Cloisite C20). The blends were then characterized for mechanical, morphological, chemical and thermal properties. It was found that tensile strength, Young's modulus, and elongation at break improved when the loadings of nanoclay were increased. Chemical analysis by FTIR revealed that PLA/POM blend is immiscible.


2015 ◽  
Vol 659 ◽  
pp. 446-452 ◽  
Author(s):  
Supatra Pratumshat ◽  
Phutthachat Soison ◽  
Sukunya Ross

In this work, the mechanical and thermal properties of pineapple leaf fiber (PALF)/poly (lactic acid) (PLA) composites were studied. Pineapple leaf fibers were pretreated with 4 %wt sodium hydroxide solution followed by various silane solutions i.e. γ-(aminopropyl) trimethoxy silane (APS), γ-methacrylate propyl trimethoxy (A174) and bis [3-(triethoxysilyl) propyl] tetrasulfide (Si69). FTIR results show a significant functional groups of C=O and C=C of methacrylic group, NH2group and Si-O which are the characteristic of these silane coupling agents. SEM micrographs of pretreated PALF showed a rough surface while untreated and silane treated PALF revealed less roughness. It was found that the tensile strength at break of PLA is 56 MPa and tensile strength of composites decreased when fiber content increased. The tensile modulus of silane treated PALF composites were higher than PLA, whereas their impact strength were similar to PLA. Si69 treated PALF showed lower impact strength compared to the others silanes treated fiber which indicates more phase separation between fiber and matrix. This is related to high percentage of crystallinity of composite from Si69 treated fiber. It was also found that the addition of PALF did not change the glass transition temperature and melting temperature of PLA while the percentage of crystallinity increases as the fiber content increased. In addition WAXS study of composite from Si69 treated fiber reveals sharp crystalline peaks of PLA while the others silane treatments show amorphous characteristic of PLA.


Sign in / Sign up

Export Citation Format

Share Document