Force Analysis and Optimal Design of Propeller for Garbage Powder Mixer

2011 ◽  
Vol 422 ◽  
pp. 438-442
Author(s):  
Mei Fa Huang ◽  
Wei Zhao Luo ◽  
Guang Qian

Propeller is one of the critical parts in garbage powder mixer and affect significantly to the performance. In order to obtain a more reasonable structure, force analysis and stress analysis is carrier out for the propeller based on the actual working condition. Optimal design for the propeller is implemented by the results of stress analysis. To verify the rationality and feasibility of this mechanism, the finite element analysis for the propeller is performed by using the ANASYS software. The simulation results show that the maximum stress of the propeller is on the joint of blade and rod. The optimized propeller is satisfied with the strength requirements.

2018 ◽  
Vol 167 ◽  
pp. 02017
Author(s):  
Yunsik Yang ◽  
Euy Sik Jeon ◽  
Dae Ho Park

Several studies have been conducted to prevent neck injury in rear-end collision. The headrest of the seat which suppresses the relative motion of the head and the torso can suppress the extension of the head, thereby alleviating the injury. The active headrest has a mechanism that supports the head by deploying the headrest at the rear-end collision. The spring remains compressed or twisted until a collision signal is generated and the headrest is deployed after the collision signal. Depending on the shape and deployment structure of the spring, a spring design with a high resilience that is acceptable to the headrest is required. In this paper, design parameter of spiral spring suitable for the structure of the developed headrest is selected, prototypes are fabricated, and development parameters such as development time and development distance are checked and optimal design parameters of the spiral spring are derived. The feasibility of the headrest with the designed spiral spring was verified by the finite element analysis.


2014 ◽  
Vol 623 ◽  
pp. 66-72
Author(s):  
Zhe Fang ◽  
Mei Han ◽  
Yu Yi Li

In the article, the study focus on the computer aid finite element analysis of the rolled-steel pallet. The value of various parameters is determined by the force analysis according to the relevant standard in working condition of shock. Meshing the modal and defining the force and constraint are discussed before the simulation. The calculated value based on Ansys is very similar to the result in the actual situation, which proved that the computer aid analysis can be used in the rolled-steel pallet detection in order to decrease the cost and increase the accuracy.


2018 ◽  
Vol 89 (11) ◽  
pp. 2142-2153 ◽  
Author(s):  
Xiaochuan Chen ◽  
Di Wang ◽  
Yiping Qiu ◽  
Jun Wang ◽  
Yong Li ◽  
...  

To analyze the stress state of seed cotton in the process of cotton ginning and to improve the quality of lint, a new model for cotton, the laminated cotton model, is presented based on the idea of a composite laminate. The model assumes the cotton mass is made up of a certain number of cotton fibers, each of which has a different arrangement angle. Based on this model, the ginning process is simulated using finite element analysis. The mechanical properties of a single cotton fiber that is either machine- or hand-picked are obtained. The working condition of the ginning process is described successfully. By analyzing the influence of different working conditions on the serration cotton ginning process, the simulation results show the model prediction is reasonably consistent with existing experiments. For example, to improve the productivity and quality of lint, it is important to guarantee the saw teeth are sharp and smooth, with none being crooked or inverted, and missing teeth on each saw blade should not exceed the specified value.


2013 ◽  
Vol 470 ◽  
pp. 216-219
Author(s):  
Xing Gu ◽  
Wei Jun Wang ◽  
Ning Lin ◽  
Dong Ik Shin

In this paper a batching machine for rubber production is presented which is widely used in rubber industry.This paper introduced the practical application and mechanical structure of batching machine then it elaborated the rotating component and the importance of shaft structure and parameters for its working qualities and working accuracy. Then it introduced the the spindles static and transient response based on ANSYS. It lays a foundation for optimal design.


2007 ◽  
Vol 546-549 ◽  
pp. 1563-1566
Author(s):  
Min Li ◽  
Bao Yan Zhang ◽  
Xiang Bao Chen

Unsymmetric composite laminates were benefit to reducing the structure weight of some aircrafts. However, the cured unsymmetric laminates showed distortion at room temperature. Therefore, predicting the deformation before using the unsymmetrical composite is very important. In this study an attempt was made to predict the shapes of some unsymmetric cross-ply laminates using the finite element analysis (FEA). The bilinear shell-element was adopted in the process. Then the simulation results were compared with the experimental data. The studies we had performed showed that the theoretical calculation agreed well with the experimental results, the predicted shapes were similar to the real laminates, and the difference between the calculated maximum deflections and the experimental data were less than 5%. Hence the FEA method was suitable for predicting the warpage of unsymmetric laminates. The error analysis showed that the simulation results were very sensitive to the lamina thickness, 2 α and (T.


2011 ◽  
Vol 396-398 ◽  
pp. 1228-1231
Author(s):  
Yu Li Liu ◽  
Hai Bo Liu ◽  
Bo Wang

In this paper, the sheet with hole for the finite element analysis, the location of maximum stress and maximum stress values are obtained under different load of edge of the hole, and the finite element analysis results compared with the classic Qi Erxi answers. This coincidence is not accidental, but it just shows their correctness. Therefore, we can use Qi Erxi answer when the calculation of the hole’s edge stress concentration and the condition of the force and the boundary are simple; while the it is complex, the finite element analysis can be used.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
JiFeng Nan ◽  
Mohammadreza Rezaei ◽  
Rashid Mazhar ◽  
Fadi Jaber ◽  
Farayi Musharavati ◽  
...  

As many as 80% of patients with TAR die on the spot while out of those reaching a hospital, 30% would die within 24 hours. Thus, it is essential to better understand and prevent this injury. The exact mechanics of TAR are unknown. Although most researchers approve it as a common-sense deceleration injury, the exact detailed mechanism of TRA still remains unidentified. In this work, a deceleration mechanism of TAR was carried out using finite element analysis (FEA). The FE analysis aimed to predict internal kinematics of the aorta and assist to comprehend the mechanism of aorta injury. The model contains the heart, lungs, thoracic aorta vessel, and rib cage. High-resolution computerized tomography (HR CT scan) was used to provide pictures that were reconstructed by MIMICS software. ANSYS FE simulation was carried out to investigate the behavior of the aorta in the thoracic interior after deceleration occurred during a car crash. The finite element analysis indicated that maximum stress and strain applied to the aorta were from 5.4819e5 to 2.614e6 Pa and 0.21048 to 0.62676, respectively, in the Y-direction when the initial velocity increased from 10 to 25 m/s. Furthermore, in the X-direction when the velocity changed from 15 to 25 m/s, the stress and strain values increased from 5.17771e5 to 2.3128e6 and from 0.22445 to 0.618, respectively.


2013 ◽  
Vol 706-708 ◽  
pp. 1140-1145
Author(s):  
Fang Liu ◽  
Wen Ming Cheng ◽  
Yi Zhou

Since the posture of portable exoskeleton is consistent with human motion and each joint degree of freedom is same, on the basis of DOF coupling in portable exoskeleton, the finite element analysis of the mechanical structure in portable exoskeleton has been calculated. According to the anthropomorphic mechanism design method, the universal joint structure has been used to meet the requirements of degrees of freedom in the mechanical structure of the exoskeleton; using the Hydraulic cylinder to simulate the contraction or stretch of human muscle, and the three-dimensional model of the exoskeleton mechanical systems has been created with the Solidworks software; selecting Human CAD software and setting the parameters of the movement of the human body model, the variations of the various joints can be obtained; using the Parasolid as the standard format for data transfer between the two software Solidworks and ANSYS, the finite element analysis model was established, and according to the principle of coupling, the three translational DOF and two rotating DOF was coupled, besides through both legs vertical standing, one knee kneeling, and one leg vertical standing three conditions, the exoskeleton strength was analyzed. The simulation results show that under the three conditions, a concentrated stress all has been found in the exoskeleton structure, besides the concentrated stresses all have been obtained in the cross-section changing site or the junction of the two components, which stress values exceeded the allowable stress values of the aluminum alloy material, so the suggestions for improvement of the structure are put forward in the article; at the same time, the simulation results provide a numerical basis for the optimization of the portable exoskeleton structure.


2013 ◽  
Vol 312 ◽  
pp. 205-209
Author(s):  
Wen Xian Tang ◽  
Jun Cao ◽  
Jian Zhang ◽  
Chao Gao

The force situation of truss legs has an important impact on the jack-up offshore platform. The finite element analysis on three types truss leg was made, and the stability of the three types truss leg under preload, operating and storm survival condition was discussed. The result showed that the maximum stress was in the chord; they met the design requirements; K type, inverse K type can save material, and they both met resonance requirements. The former had a better stability under preload condition, and the later had the best stability under operating, storm survival condition.


Sign in / Sign up

Export Citation Format

Share Document