The Criterion of Red Blood Cell’s Fragmentation and the Turbulent Flow Field Simulation Analysis in the High-Speed Spiral Blood Pump

2011 ◽  
Vol 422 ◽  
pp. 767-770
Author(s):  
Zhong Yun ◽  
Xiao Yan Tang ◽  
Chuang Xiang ◽  
Fen Shi

For a blood pump, the injury to blood is a very important index of its performance. The strongly swirling turbulent flow in the internal flow field of a high-speed spiral blood pump(HSBP), is one of important factors leading to the fragmentation of the red blood cell(RBC) and the hemolysis. The study on the turbulent injure principle of blood in the HSBP is carried out by using the theory of the turbulent flow field and the hemorheology. The determinant gist on RBC turbulent fragmentation is obtained. The turbulent flow in the designed HSBP have been simulated and analyzed by using the multiphase suspend body CFD simulation technology. The simulation results indicate that the turbulence in the designed HSBP can meet the requirements of blood physiology.

2011 ◽  
Vol 393-395 ◽  
pp. 992-995
Author(s):  
Zhong Yun ◽  
Chuang Xiang ◽  
Xiao Yan Tang ◽  
Fen Shi

The strongly swirling turbulent flow in the internal flow field of a high-speed spiral blood pump(HSBP), is one of important factors leading to the fragmentation of the red blood cell(RBC) and the hemolysis. The study on the turbulent injure principle of blood in the HSBP is carried out by using the theory of waterpower rotated flow field and the hemorheology. The numerical equation of the strongly swirling turbulent flow field is proposed. The largest stable diameter of red blood cells in the turbulent flow field is analyzed. The determinant gist on the red blood cell turbulent fragmentation is obtained. The results indicate that in the HSMP, when turbulent flow is more powerful, shear stress is weaker, the vortex mass with energy in flow field may cause serious turbulent fragmentation because of the diameter which is smaller than the RBC’s. The RBC’s turbulent breakage will occur when the Weber value is larger than 12.


2019 ◽  
Vol 62 ◽  
pp. 103983 ◽  
Author(s):  
Valeria Di Sarli ◽  
Enrico Danzi ◽  
Luca Marmo ◽  
Roberto Sanchirico ◽  
Almerinda Di Benedetto

Author(s):  
Hong-Jie Wang ◽  
Ru-Zhi Gong ◽  
De-Ping Lu ◽  
Zhong-De Wu ◽  
Feng-Chen Li

Thrust bearing is a key component of large-scale water turbine. It closely relates to the efficiency of large-scale water turbines, and even determines whether the large-scale turbine can operate normally. With the development of the capacitance of water turbines, thrust bearing will develop to the direction of high speed and heavy load. The structure, strength, lubrication and the characteristic of heat radiation of large-scale thrust bearing were often researched in the past. To study the flow condition of the large-scale thrust bearing and analyze the load characteristics, CFD simulation was carried out on the model of thrust bearing. In this study, CFD method was used to simulate the internal flow field of the large-scale thrust bearing. The model researched was a thrust bearing for 1000MW water turbines. The diameter of the thrust bearing was over 5.8 meters, and the maximum thrust load of the bearing can reach to 60MN. The thin gap between the runner and the pad was usually neglected in the published CFD calculations of thrust bearing. But the thin gap was taken into account in this investigation. 1/12 of the model was used as the computational field and periodic boundary was used in the calculation. The standard κ-ε turbulence model was used to simulate the thrust bearing model, and the flow field in the thrust bearing was obtained. The thin gap between the runner and the pad is a wedge. The pressure and velocity distribution in the thrust bearing and thin gap was calculated respectively with conditions of different thin gaps and different rotational speeds of runner. After that, the relationship between carrying capacity and the size of clearance or the speed of the runner through analyzing the data has been obtained from the results of the calculation.


2013 ◽  
Vol 328 ◽  
pp. 1000-1003
Author(s):  
Yu Lieh Wu ◽  
Szo Tso Li ◽  
Wang Lin Liu ◽  
Pei Kun Lin

This study aims at the array ultrasonic nozzle sprayed atomization flow field on flat plate, and uses different design and operating parameter combinations to analyze the distribution of spray flow field, the analytic results can be used to improve the flat plate coating performance of the array ultrasonic nozzle spraying equipment. The simulation analysis results will be compared and validated by practical spray coating experiment, so as to determine the reliability of simulation to implement the spray flow field simulation technique for large area uniform spray coating. The mean error value is less than 24%, proving that the simulation results have certain feasibility and accuracy.


2011 ◽  
Vol 339 ◽  
pp. 148-151 ◽  
Author(s):  
Shu Juan Zheng ◽  
Long Quan

This paper optimizes the structure of the poppet valve based on the internal flow. The flow-force on poppet valve in the case of the converging flow is simulated and studied by CFD. Simulation results represent that the traditional formula for computing the flow-force can be used only in the certain range, so the formula is modified based on the simulation result.


2012 ◽  
Vol 621 ◽  
pp. 196-199
Author(s):  
Shui Ping LI ◽  
Ya Li Yuan ◽  
Lu Gang Shi

Numerical simulation method of the internal flow field of fluid machinery has become an important technology in the study of fluid machinery design. In order to obtain a high-performance cement slurry mixer, computational fluid dynamics (CFD) techniques are used to simulate the flow field in the mixer, and the simulation results are studied. According to the analysis results, the structural parameters of the mixer are modified. The results show the mixer under the revised parameters meet the design requirements well. So CFD analysis method can shorten design period and provide valuable theoretical guidance for the design of fluid machinery.


Author(s):  
Veeraraghava R Hasti ◽  
Prithwish Kundu ◽  
Sibendu Som ◽  
Jay P Gore

The turbulent flow field in a practical gas turbine combustor is very complex because of the interactions between various flows resulting from components like multiple types of swirlers, dilution holes, and liner effusion cooling holes. Numerical simulations of flows in such complex combustor configurations are challenging. The challenges result from (a) the complexities of the interfaces between multiple three-dimensional shear layers, (b) the need for proper treatment of a large number of tiny effusion holes with multiple angles, and (c) the requirements for fast turnaround times in support of engineering design optimization. Both the Reynolds averaged Navier–Stokes simulation (RANS) and the large eddy simulation (LES) for the practical combustor geometry are considered. An autonomous meshing using the cut-cell Cartesian method and adaptive mesh refinement (AMR) is demonstrated for the first time to simulate the flow in a practical combustor geometry. The numerical studies include a set of computations of flows under a prescribed pressure drop across the passage of interest and another set of computations with all passages open with a specified total flow rate at the plenum inlet and the pressure at the exit. For both sets, the results of the RANS and the LES flow computations agree with each other and with the corresponding measurements. The results from the high-resolution LES simulations are utilized to gain fundamental insights into the complex turbulent flow field by examining the profiles of the velocity, the vorticity, and the turbulent kinetic energy. The dynamics of the turbulent structures are well captured in the results of the LES simulations.


Sign in / Sign up

Export Citation Format

Share Document