transonic axial compressor
Recently Published Documents


TOTAL DOCUMENTS

174
(FIVE YEARS 38)

H-INDEX

14
(FIVE YEARS 3)

2022 ◽  
Vol 31 (1) ◽  
pp. 179-188
Author(s):  
Xinlong Li ◽  
Shuaipeng Liu ◽  
Shaojuan Geng ◽  
Hongwu Zhang

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 159
Author(s):  
Tien-Dung Vuong ◽  
Kwang-Yong Kim

The present work performed a comprehensive investigation to find the effects of a dual-bleeding port recirculation channel on the aerodynamic performance of a single-stage transonic axial compressor, NASA Stage 37, and optimized the channel’s configuration to enhance the operating stability of the compressor. The compressor’s performance was examined using three parameters: The stall margin, adiabatic efficiency, and pressure ratio. Steady-state three-dimensional Reynolds-averaged Navier–Stokes analyses were performed to find the flow field and aerodynamic performance. The results showed that the addition of a bleeding channel increased the recirculation channel’s stabilizing effect compared to the single-bleeding channel. Three design variables were selected for optimization through a parametric study, which was carried out to examine the influences of six geometric parameters on the channel’s effectiveness. Surrogate-based design optimization was performed using the particle swarm optimization algorithm coupled with a surrogate model based on the radial basis neural network. The optimal design was found to increase the stall margin by 51.36% compared to the case without the recirculation channel with only 0.55% and 0.28% reductions in the peak adiabatic efficiency and maximum pressure ratio, respectively.


Author(s):  
Botao Zhang ◽  
Bo Liu ◽  
Xiaochen Mao ◽  
Xiaoxiong Wu ◽  
Hejian Wang

To deeply understand the hub leakage flow and its influence on the aerodynamic performance and flow behaviors of a small-scale transonic axial compressor, variations of the performance and the flow field of the compressor with different hub clearance sizes and clearance shapes were numerically analyzed. The results indicate that the hub clearance size has remarkable impacts on the overall performance of the compressor. With the increase of the hub clearance, the intensity of the hub leakage flow increases, resulting in more intense flow blockage near the stator hub, which reduces the compressor efficiency. However, the flow field near the blade mid-span is modified due to the more convergent flow as the reduced effective flow area caused by the passage blockage, and the flow separation range is narrowed, thus the flow stability of the compressor is enhanced. On this basis, two kinds of non-uniform clearance cases of expanding clearance and shrinking clearance with the same circumferential leakage area as the design clearance were investigated. The occurrence position of the double leakage flow which is closely connected with the flow loss and blockage is shifted backward by the expanding clearance, the flow capacity near the stator hub is enhanced, and the unsteady fluctuation intensity of the flow field is attenuated but fluctuation frequency remains. Similarly, the modification of the stator blade root flow field may result in the reduction of stall margin. The effect of the shrinking clearance on compressor performance is opposite to that of the expanding clearance, which reduces the peak efficiency and delays the stall inception.


2021 ◽  
Vol 1891 (1) ◽  
pp. 012019
Author(s):  
A.I. Borovkov ◽  
Yu. B. Galerkin ◽  
O.A. Solovieva ◽  
A.A. Drozdov ◽  
A.F. Rekstin ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2346
Author(s):  
Tien-Dung Vuong ◽  
Kwang-Yong Kim

A casing treatment using inclined oblique slots (INOS) is proposed to improve the stability of the single-stage transonic axial compressor, NASA Stage 37, during operation. The slots are installed on the casing of the rotor blades. The aerodynamic performance was estimated using three-dimensional steady Reynolds-Averaged Navier-Stokes analysis. The results showed that the slots effectively increased the stall margin of the compressor with slight reductions in the pressure ratio and adiabatic efficiency. Three geometric parameters were tested in a parametric study. A single-objective optimization to maximize the stall margin was carried out using a Genetic Algorithm coupled with a surrogate model created by a radial basis neural network. The optimized design increased the stall margin by 37.1% compared to that of the smooth casing with little impacts on the efficiency and pressure ratio.


2021 ◽  
Vol 111 ◽  
pp. 106556
Author(s):  
Tien-Dung Vuong ◽  
Kwang-Yong Kim ◽  
Cong-Truong Dinh

2021 ◽  
pp. 1-22
Author(s):  
Ahmad Fikri Bin Mustaffa ◽  
Vasudevan Kanjirakkad

Abstract The stability limit of a tip-stalling axial compressor is sensitive to the magnitude of the near casing blockage. In transonic compressors, the presence of the passage shock could be a major cause for the blockage. Identification and elimination of this blockage could be key to improving the stability limit of the compressor. In this paper, using numerical simulation, the near casing blockage within the transonic rotor, NASA Rotor 37, is quantified using a blockage parameter. For a smooth casing, the blockage at conditions near stall has been found to be maximum at about 20% of the tip axial chord downstream of the tip leading edge. This maximum blockage location is found to be consistent with the location of the passage shock-tip leakage vortex interaction. A datum single casing groove design that minimises the peak blockage is found through an optimisation approach. The stall margin improvement of the datum casing groove is about 0.6% with negligible efficiency penalty. Furthermore, the location of the casing groove is varied upstream and downstream of the datum location. It is shown that the stability limit of the compressor is best improved when the blockage is reduced upstream of the peak blockage location. The paper also discusses the prospects of a multi-groove casing configuration.


Sign in / Sign up

Export Citation Format

Share Document