Control System Modeling for Automotive Brake Test-Bench Based on Discrete Closed-Loop and Phase-Locked Loop

2012 ◽  
Vol 433-440 ◽  
pp. 2184-2188
Author(s):  
Jia Xi Du ◽  
Hong Shen ◽  
Su Fang Fu ◽  
Xin Ning

According to the law of rigid body around fixed axis rotation, established the mathematical model of motor drive current and instantaneous rotational speed. From the ideal situation of the simulation, according to the same discrete interval of time equal to the same increment of spindle angular velocity conditions, established the discrete closed-loop control system model. In allusion to the disadvantage of calculating corresponding braking current by the instantaneous speed and the instantaneous braking torque measured during the last interval, proposed the control method of calculating braking current by the instantaneous speed and the instantaneous braking torque measured all discrete intervals before current time. Discussed emphatically the computer controlled method based on the discrete closed-loop and phase-locked loop theory which can be used to design the braking current. Evaluated the advantages and disadvantages of the model, and proposed the improved direction.

2009 ◽  
Vol 628-629 ◽  
pp. 257-262 ◽  
Author(s):  
Tong Xing

The cutter head drive hydraulic system of φ1.8m simulate shield machine is introduced in this article, which has the variable speed pump control technique and the closed loop control method. The AMESim simulation model of the hydraulic system is built up, and the efficiency of the hydraulic system, speed control performance by open loop and closed loop control are analyzed. The result of the simulation shows that the variable speed pump control system has higher efficiency than the variable displacement pump control system about 4%-26% in the same condition when the cutter head speed is at the range of 0.5-4r/min, and the hydraulic system has good dynamic characteristics in closed-loop PID control.


2012 ◽  
Vol 627 ◽  
pp. 428-434
Author(s):  
Tao Yang ◽  
Lin Yin Liu ◽  
Wei Rong Dai

The warp tension is caused by the speed difference between rewinding shaft and unwinding shaft. The mathematical dynamic models of the system are established based on rewinding shaft and unwinding shaft.Double closed loop are included in the control system. One is winding speed closed loop which could control warping speed according to the requirements; the other is tension closed loop which ensure the yarn tension to be kept constant. The experimental results show the curve of tension enters a stable state after two or three times’ oscillation. The accuracy of the yarn tension has reached ±3%.


2011 ◽  
Vol 22 (12) ◽  
pp. 1393-1407 ◽  
Author(s):  
HONGYUE DU

This paper investigates the modified function projective synchronization (MFPS) in drive-response dynamical networks (DRDNs) with different nodes, which means that systems in nodes are strictly different. An adaptive open-plus-closed-loop (AOPCL) control method is proposed, which is a practically realizable method and can overcome the model mismatched to achieve synchronization. It is well known that each of the close-loop and open-loop control method possesses some advantages and disadvantages. By combining their advantages, the open-plus-closed-loop (OPCL) control method was proposed by Jackson and Grosu. For arbitrary nonlinear dynamic systems, dx/dt = F(x,t), Jackson and Grosu proved that there exists solutions, x(t), in the neighborhood of any arbitrary goal dynamics g(t) that are entrained to g(t), through the use of an additive controlling action, K(g,x,t) = H(dg/dt,g) + C(g,t)(g(t) - x), which is the sum of the open-loop action, H(dg/dt,g), and a suitable linear closed-loop (feedback) action C(g,t). This method is a practically realizable method and robust to limited accuracy of data and effects of noise. The AOPCL control method preserve the merits of OPCL control method and its closed loop control part can be automatically adapted to suitable constants. Considering time-delays are always unavoidably in the practical situations, MFPS in DRDNs with time-varying coupling delayed is further investigated by the proposed method. Corresponding numerical simulations are performed to verify and illustrate the analytical results.


2011 ◽  
Vol 204-210 ◽  
pp. 699-703
Author(s):  
Wei Kang ◽  
Li Xia Zhang ◽  
Zhen Lei

The double closed-loop control system of current source SPWM inverter (CSI) is designed to meet the need of battery pack testing system. The battery pack has tiny inner resistance, back electromotive force and it acted as a comparative load which made the control system hard to design. The control system aimed at the specialty of the battery pack load and put forward a loop-locked control method based on dq coordinate conversion of CSI. Typical I and II control system is adopted to get a better performance. It increases the transform efficiency by SPWM and gets high power factor and high dynamic response quality by dq coordinate conversion. Simulations and tests proved the correctness and feasibility of the control system.


2015 ◽  
Vol 727-728 ◽  
pp. 843-846
Author(s):  
Qing Liang Zeng ◽  
Bin Bin Liu ◽  
Xin Chao Wang ◽  
Qiang Gu

Taking the swash plate piston pump as the research plant, the paper introduces the composition of digital control system of variable pump first; Then the mathematical model of variable mechanism is established according to which the closed-loop flow control system and the power control system are worked out. Also, the paper shows the stability margin of the control system and analyzes some response indices to step command under Matlab simulation. Aiming at the shortage of the closed-loop control system, the paper gives an idea of an optimization design of the compound power control system based on both feed-forward and feedback control. Compared with the conventional closed-loop power control method, the compound one gets a 47.2% reduction in the adjusting time and a 38.2% decrease in the overshoot indicating that the adjusting process is obviously shortened and the disturbance effect effectively weakened.


Author(s):  
Axel Fehrenbacher ◽  
Christopher B. Smith ◽  
Neil A. Duffie ◽  
Nicola J. Ferrier ◽  
Frank E. Pfefferkorn ◽  
...  

The objective of this research is to develop a closed-loop control system for robotic friction stir welding (FSW) that simultaneously controls force and temperature in order to maintain weld quality under various process disturbances. FSW is a solid-state joining process enabling welds with excellent metallurgical and mechanical properties, as well as significant energy consumption and cost savings compared to traditional fusion welding processes. During FSW, several process parameter and condition variations (thermal constraints, material properties, geometry, etc.) are present. The FSW process can be sensitive to these variations, which are commonly present in a production environment; hence, there is a significant need to control the process to assure high weld quality. Reliable FSW for a wide range of applications will require closed-loop control of certain process parameters. A linear multi-input-multi-output process model has been developed that captures the dynamic relations between two process inputs (commanded spindle speed and commanded vertical tool position) and two process outputs (interface temperature and axial force). A closed-loop controller was implemented that combines temperature and force control on an industrial robotic FSW system. The performance of the combined control system was demonstrated with successful command tracking and disturbance rejection. Within a certain range, desired axial forces and interface temperatures are achieved by automatically adjusting the spindle speed and the vertical tool position at the same time. The axial force and interface temperature is maintained during both thermal and geometric disturbances and thus weld quality can be maintained for a variety of conditions in which each control strategy applied independently could fail.


2011 ◽  
Vol 219-220 ◽  
pp. 3-7
Author(s):  
Ning Zhang ◽  
Rong Hua Liu

An expert control system based on transient response patterns and expert system techniques is proposed in this paper. Depending on the features of the closed-loop control system determines the control decision and adjusts the parameters of the controller. The proposed method requires minimal proper information about the controlled plant and, with the linear re-excitation learning method, the system is kept satisfying the performance criterion.


Sign in / Sign up

Export Citation Format

Share Document