Voltage Instability Analysis for Electrical Power System Using Voltage Stabilty Margin and Modal Analysis

Author(s):  
Ahmad Fateh Mohamad Nor ◽  
Marizan Sulaiman ◽  
Aida Fazliana Abdul Kadir ◽  
Rosli Omar

Voltage instability analysis in electric power system is one of the most important factors in order to maintain the equilibrium of the power system. A power system is said to be unstable if the system is not able to maintain the voltage at all buses in the system remain unchanged after the system is being subjected to a disturbance.The research work presented in this paper is about the analysis of voltage instability of electric power system by using voltage stability margin (VSM), load real power (P) margin, reactive power (Q) margin, reactive power-voltage (QV) and real power-voltage (PV) modal analysis. IEEE 30-bus system has been chosen as the power system. The load flow analysis are simulated by using Power World Simulator software version 16. Both QV and PV modal analysis were done by using MATLAB application software.

Author(s):  
Hayatul Harifin ◽  
Novalio Daratha ◽  
M. Khairul Amri Rosa

AbstractLoad flow analysis is a study to plan and determine the amount of power in an electric power system. During its development, industry requires a large amount of electric power and uses electrical equipment as a means of production. The benefits of an electric load flow analysis are to find out the amount of power in the electric power system whether it still meets predetermined limits, and to find out the amount of voltage at each point, and to obtain initial conditions for the new system planning. Load flow analysis begins calculating the active power and reactive power at each node (bus) installed, loading on the channel or conductor, the load flow calculation will be assisted using the Julia program. From the results of calculations using the Julia program, the voltage at each point with the smallest stress is obtained, namely the 10th point of 209.89 - j10.34V for phase A, -107.39 - j186.87V for phase B, -108.12 + j178,51V for phase CKey Words: Drop Voltage, Julia, Load Flow


Author(s):  
Robi Kurniawan ◽  
Ardiansyah Nasution ◽  
Arnawan Hasibuan ◽  
Muzamir Isa ◽  
Muskan Gard ◽  
...  

Distributed Generation (DG) is a small capacity generator located in the electricity distribution system and is usually placed on buses that are connected directly to the load. Placement of distributed generation is one of the technical efforts to reduce voltage drop and power losses in the system. In addition, load flow analysis is a study to plan and determine the amount of power in an electric power system. The results of power losses after adding distributed generation were the best in the fifth experiment on bus 149, where the system experienced a total loss of active power (P) previously of 720,822 kW, to 682,939 kW and total loss of reactive power (Q) previously of 530.02 kVar, to 405.835 kVar. From the results of the calculation of the power flow using ETAP software (Electrical Transient Analyzer Program). So, it can be concluded that the electrical network system can be said to be good. The results obtained are the more DG (wind turbine generator) that is input into the bus it will reduce the voltage drop that occurs. After simulating the overall voltage drop, it still meets the standards according to the results of the Text Report on ETAP.


2012 ◽  
Vol 433-440 ◽  
pp. 7208-7212
Author(s):  
Ya Min Su Hlaing ◽  
Ze Ya Aung

This thesis implements power flow application, Newton-Raphson method. The Newton-Raphson method is mainly employed in the solution of power flow problems. The network of Myanma electric power system is used as the reference case. The system network contains 90 buses and 106 brunches. The weak points are found in the network by using Newton-Raphson method. Bus 16, 17, 85 and 86 have the most weak bus voltages. The medium transmission line between bus 87 and bus 17 is compensated by using MATLAB program software. The transmission line is compensated with shunt reactors, series and shunt capacitors to improve transient and steady-state stability, more economical loading, and minimum voltage dip on load buses and to supply the requisite reactive power to maintain the receiving end voltage at a satisfactory level. The system performance is tested under steady-state condition. This paper investigates and improves the steady–state operation of Myanma Power System Network.


Vestnik MEI ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 11-18
Author(s):  
Nailia Sh. Chemborisova ◽  
◽  
Ivan D. Chernenkov ◽  

The problem of selecting the electric power system control nodes is studied. By performing control of these modes, matters concerned with providing reliable power supply of the required quality to consumers can be settled in the most efficient manner. As an example, a fragment of the electric power system mathematical model used in the Finist mode-setting simulator for a power system dispatch control center operator is considered, which represents a highly branched electrical network consisting of eleven 110 kV nodes, three 220 kV nodes connected with the system, and two generator nodes. A new procedure for selecting the control nodes is proposed, which takes into account a combination of different indicators having different measurement units, dimensions and scales is proposed. These indicators characterize the following properties of power system nodes: the reactive power fraction absorbed at a node, the sensitivity of voltage to reactive load variations, the number of connected power lines, and statistical indicators characterizing the change of voltage at the nodes and reactive power flows for different options of installing the reactive power compensation devices. For combined use of these indicators, they were ranked according to the efficiency of installing reactive power compensation devices in the system. For each indicator, a scale of five ranks (intervals) is set, which determine the preferences (qualitative judgments) of the researcher in evaluating the reactive power compensation devices installation efficiency at the system nodes. The highest rank (5) corresponds to the maximum efficiency, and the lowest rank (1) corresponds to the minimum efficiency. To calculate the individual (integral) priority indicator of installing reactive power compensation devices, the ranks of indicators are added together, and their sum is divided by the product of the number of ranks by the number of the used indicators (features). Based on the calculation results, the rating (location) of each node is determined, and the nodes for installing the reactive power compensation devices are selected according to their effect on ensuring the electric power system operation reliability, active power losses in the network, and voltage regulation. Thus, a new procedure is presented for determining the integral indicators for comprehensively estimating the properties of complex electric power system nodes and selecting the controlled nodes using a system of various indicators. These indicators characterize the studied nodes in terms of the efficiency of installing reactive power compensation devices to reduce active power losses in the network, voltage regulation, and ensuring the electric power system operational reliability. The validity of the results obtained in the study is confirmed by their comparison with the indicators of the balance-conductivity method, which has proven itself in solving problems connected with determining the nodes for controlling electric power system operation modes.


Author(s):  
Rana A. Jabbar ◽  
Muhammad Junaid ◽  
M. A. Masood ◽  
A. Bashir ◽  
M. Mansoor

Power system analyses and monitoring of power system engineering are as essential as oxygen for human beings. This innovative approach deals with a 132 kV grid simulation in electrical transient analyzer program (ETAP). The existing power distribution system in Pakistan consists of approximately six thousand 11 kV feeders, which are mainly analyzed by software FDR-ANA (Feeder Analyses). This software does not have capability to provide comprehensive analyses for integrated power system. The case under study is 132 kV grid situated in Gujranwala electric power company (GEPCO), one of the distribution companies (DISCO’s) of Pakistan electric power company (PEPCO) which has been selected for comprehensive analyses using ETAP software. This software performs numerical calculations of large integrated power system with fabulous speed, besides generating output reports. In a developing country like Pakistan it is first time that analyses based Off-line monitoring has been made, which includes load flow, harmonic, transient, short circuit and ground grid analyses. In load flow analysis, current flowing in every branch, power factor, active and reactive power flow, line losses, voltage magnitude with angle etc. have been calculated. During harmonic analysis, distorted current and voltage waveforms along with their harmonic spectrum caused by non-linear loads have been recorded. Transient analysis has been performed to record different waveforms like variation in bus frequency, bus real power loading, bus voltage angle, and bus reactive power loading for short interval of time during transient conditions. In ground grid modeling, step, and touch potentials have been calculated in comparison with set standards. While performing short circuit analysis, all the possible short circuit faults like line to ground, double line to ground, 3-phase faults etc. on ½ cycle, 1.5 to 4 cycle, and 30 cycle networks have been performed to record the short circuit currents. These analyses have been executed using ETAP software, based upon historical data obtained from original system that will be very helpful for system security and reliability.


Sign in / Sign up

Export Citation Format

Share Document