Study on the Performance of Braze Cemented Carbide Cutting Tool

2012 ◽  
Vol 443-444 ◽  
pp. 607-611 ◽  
Author(s):  
Chun Ye Zhang ◽  
Hong Jie Pei ◽  
Qin Feng Li ◽  
Chun Yan Zhang ◽  
Gui Cheng Wang

The Cemented carbide cutting tool is widely used in more machining factory, the 5 types of cemented carbide materials: YT30+Ta, YTS25, YH1, 726 and 758 and Selected to make brazing and cutting test. The experiment results shown that: (a) the hardness of cemented carbide cutting tool after being brazed does not change, redoes HRA0.1~0.2; (b) YT30+Ta, YTS25 types of cemented carbide could be brazed using 105# solder, brazing quality could be very well; (c) Wear characteristic of machine-clamping and brazed cemented carbide cutting tool is normal and hardly change in T<150 minutes. The study makes theory and experiment foundation to widely use cemented carbide cutting tools.

2011 ◽  
Vol 1298 ◽  
Author(s):  
Piyush Jaiswal ◽  
Abdul Sathar ◽  
Arshiyan Shariff ◽  
Mohammed Saif ◽  
Sukanya Dhar ◽  
...  

ABSTRACTLow-pressure MOCVD, with tris(2,4-pentanedionato)aluminum(III) as the precursor, was used in the present investigation to coat alumina on to cemented carbide cutting tools. To evaluate the MOCVD process, the efficiency in cutting operations of MOCVD-coated tools was compared with that of tools coated using the industry-standard CVD process.Three multilayer cemented carbide cutting tool inserts, viz., TiN/TiC/WC, CVD-coated Al2O3 on TiN/TiC/WC, and MOCVD-coated Al2O3 on TiN/TiC/WC, were compared in the dry turning of mild steel. Turning tests were conducted for cutting speeds ranging from 14 to 47 m/min, for a depth of cut from 0.25 to 1 mm, at the constant feed rate of 0.2 mm/min. The axial, tangential, and radial forces were measured using a lathe tool dynamometer for different cutting parameters, and the machined work pieces were tested for surface roughness. The results indicate that, in most of the cases examined, the MOCVD-coated inserts produced a smoother surface finish, while requiring lower cutting forces, indicating that MOCVD produces the best-performing insert, followed by the CVD-coated one. The superior performance of MOCVD-alumina is attributed to the co-deposition of carbon with the oxide, due to the very nature of the precursor used, leading to enhanced mechanical properties for cutting applications in harsh environment.


2012 ◽  
Vol 155-156 ◽  
pp. 960-964
Author(s):  
Ji Cai Kuai ◽  
Fei Hu Zhang ◽  
Ya Zhong Liu

As ELID grinding technology is characterized by simpleness, practicality, low cost and so on, it is wildly used in ultra-precision sharpening, ultra-precision grinding, ultra-precision polishing and some other fields of difficult-to-cut material. ELID grinding technology was applied in the grinding of cutting tool in this paper, and the cutting tools with nano-grained cemented carbide, common cemented carbide, nanoY-TZP ceramics and some other materials were respectively grinded. Then, the surface quality of their anterior and posterior grinding horns and their edge radius were studied and compared with traditional grinding technology of cutting tool. The results show that the surface roughness and edge radius of nano-grained cemented carbide cutting tool are respectively Ra2nm and 0.3μm, the surface roughness and edge radius of common cemented carbide cutting tool are respectively Ra20nm and 1μm and the surface roughness and edge radius of nanoY-TZP ceramic cutting tool are respectively Ra60nm and 0.2μm after grinding by applying ELID grinding technology, which are far better than that from traditional grinding technology; this further proves that the adoption of ELID grinding technology in the grinding of cutting tool is feasible.


2014 ◽  
Vol 27 (1) ◽  
pp. 79-85 ◽  
Author(s):  
Xingang Wang ◽  
Yimin Zhang ◽  
He Li ◽  
Chunmei Lü

2021 ◽  
Vol 40 (1) ◽  
pp. 77-86
Author(s):  
Siwen Tang ◽  
Pengfei Liu ◽  
Zhen Su ◽  
Yu Lei ◽  
Qian Liu ◽  
...  

Abstract Al2O3 nano-scaled coating was prepared on micro-textured YT5 cemented carbide cutting tools by atomic layer deposition ALD. The effect of Al2O3 nano-scaled coating, with and without combined action of texture, on the cutting performance was studied by orthogonal cutting test. The results were compared with micro-textured cutting tool and YT5 cutting tool. They show that the micro-texture and nano-scaled Al2O3 coated on the micro-texture both can reduce the cutting force and friction coefficient of the tool, and the tools with nano-scaled Al2O3 coated on the micro-texture are more efficient. Furthermore, the friction coefficient of the 100 nm Al2O3-coated micro-texture tool is relatively low. When the distance of the micro-pits is 0.15 mm, the friction coefficient is lowest among the four kinds of pit textured nanometer coating tools. The friction coefficient is the lowest when the direction of the groove in strip textured nanometer coating tool is perpendicular to the main cutting edge. The main mechanism of the nanometer Al2O3 on the micro-textured tool to reduction in cutting force and the friction coefficient is discussed. These results show that the developed tools effectively decrease the cutting force and friction coefficient of tool–chip interface.


Author(s):  
Yury Rodichev ◽  
Olena Soroka ◽  
Viktor Kovalov ◽  
Yana Vasilchenko ◽  
Viktor Maiboroda

1997 ◽  
Vol 138-140 ◽  
pp. 177-194
Author(s):  
Anthony J. Perry ◽  
James R. Treglio ◽  
Daniel E. Geist ◽  
Deepak G. Bhat ◽  
S. Prasad Boppana ◽  
...  

Materia Japan ◽  
2003 ◽  
Vol 42 (12) ◽  
pp. 891-891
Author(s):  
Toshio Ishii ◽  
Hiroshi Ueda ◽  
Masayuki Gonda ◽  
Tsunehiro Kawata

Author(s):  
V. S. Panov

The paper describes the technology of producing a wear resistant silicon nitride coating on cemented carbide cutting tools and factors affecting its structure and thickness. A review of domestic and foreign authors’ works is given on the properties and applications of cemented carbides in cutting, drilling, die stamping tools, wear resistant materials, for chipless processing of wood, plastics. It is noted that one of the promising ways of cutting tool development is using indexable throwaway inserts (ITI) with wear resistant coatings. The choice of silicon nitride as a material for cemented carbide tool coating is justified. The data on silicon nitride deposition methods, investigation of cutting tool structures and properties are provided. Laboratory and factory tests of Si3N4-coated cemented carbide tools demonstrated coating applicability in improving the wear resistance and lifetime of cutting inserts.


Sign in / Sign up

Export Citation Format

Share Document