Cemented carbide cutting tools coated with silicon nitride

Author(s):  
V. S. Panov

The paper describes the technology of producing a wear resistant silicon nitride coating on cemented carbide cutting tools and factors affecting its structure and thickness. A review of domestic and foreign authors’ works is given on the properties and applications of cemented carbides in cutting, drilling, die stamping tools, wear resistant materials, for chipless processing of wood, plastics. It is noted that one of the promising ways of cutting tool development is using indexable throwaway inserts (ITI) with wear resistant coatings. The choice of silicon nitride as a material for cemented carbide tool coating is justified. The data on silicon nitride deposition methods, investigation of cutting tool structures and properties are provided. Laboratory and factory tests of Si3N4-coated cemented carbide tools demonstrated coating applicability in improving the wear resistance and lifetime of cutting inserts.

2013 ◽  
Vol 652-654 ◽  
pp. 2200-2204 ◽  
Author(s):  
Bao Lin Wang ◽  
Xing Ai ◽  
Zhan Qiang Liu ◽  
Ji Gang Liu

This paper presents investigations on turning TC4 alloy with PVD TiAlN coated cemented carbide inserts. The turning test was conducted with variable cutting speeds ranging from 80 to 120 m/min. Wear surfaces of the cutting tools are analyzed to study the wear mechanism of PVD TiAlN coated cemented carbide tools in turning of titanium alloy TC4. Scanning Electron Microscope (SEM) and Energy Dispersive Spectrometer( EDS) analyses by wear maps indicated that the wear of coated cemented carbide tools was caused by adhesion, coating delamination and mechanical fatigue. The analysis of EDS indicated no oxidation wear generated during the machining. The excellent chemical stability and oxidation resistance performance of TiAlN coating made contribution to prevent oxidation wear.


2010 ◽  
Vol 30 (9) ◽  
pp. 910-920 ◽  
Author(s):  
F. V. Kiryukhantsev-Korneev ◽  
N. A. Shirmanov ◽  
A. N. Sheveiko ◽  
E. A. Levashov ◽  
M. I. Petrzhik ◽  
...  

1996 ◽  
Vol 86-87 ◽  
pp. 678-685 ◽  
Author(s):  
M.A. Taher ◽  
W.F. Schmidt ◽  
W.D. Brown ◽  
S. Nasrazadani ◽  
H.A. Nasseem ◽  
...  

1985 ◽  
Vol 107 (2) ◽  
pp. 99-106 ◽  
Author(s):  
R. Komanduri ◽  
M. Lee

The salient features of a simple, wear-tolerant cemented carbide tool are described. Results are presented for high-speed machining (3 to 5 times the conventional speeds) of titanium alloys in turning and face milling. This tool, termed the ledge cutting tool, has a thin (0.015 to 0.050 in.) ledge which overhangs a small distance (0.015 to 0.060 in.) equal to the depth of cut desired. Such a design permits only a limited amount of flank wear (determined by the thickness of the ledge) but continues to perform for a long period of time as a result of wear-back of the ledge. Under optimum conditions, the wear-back occurs predominantly by microchipping. Because of geometric restrictions, the ledge tool is applicable only to straight cuts in turning, facing, and boring, and to face milling and some peripheral milling. Also, the maximum depth of cut is somewhat limited by the ledge configuration. In turning, cutting time on titanium alloys can be as long as ≈ 30 min. or more, and metal removal of ≈ 60 in.3 can be achieved on a single edge. Wear-back rates in face milling are about 2 to 3 times higher than in straight turning. The higher rates are attributed here to the interrupted nature of cutting in milling. Use of a grade of cemented carbide (e.g., C1 Grade) which is too tough or has too thick a ledge for a given application leads to excessive forces which can cause gross chipping of the ledge (rapid wear) and/or excessive deflection of the cutting tool with reduced depth of cut. Selection of a proper grade of carbide (e.g., Grades C2, C3, C4) for a given application results in uniform, low wear-back caused by microchipping. Because of the end cutting edge angle (though small, ≈ 1 deg) used, the ledge tool can generate a slight taper on very long parts; hence an N.C. tool offset may be necessary to compensate for wear-back. The ledge tool is found to give excellent finish (1 to 3 μm) in both turning and face milling. In general, conventional tooling with slight modifications can be used for ledge machining. The ledge tool can also be used for machining cast iron at very high speeds.


2012 ◽  
Vol 497 ◽  
pp. 10-14
Author(s):  
Tie Jun Song ◽  
Zhi Xiong Zhou ◽  
Wei Li ◽  
Ai Min Tang

Cup wheel grinding and etching pretreatment are widely used in complex coated cemented carbide cutting tools machining process. The two processes determine different surface properties due to various mechanical and thermal loads in grinding and complex chemical reaction in etching pretreatment. In this paper, the effect of the grinding wheel speed, the grinding feed rate and the etching time with the Murakami and acid solution on the residual stress and surface topography of coated cemented carbide cutting tools are investigated. After each process, the samples are characterized by scanning electron microscopy and X-ray diffraction. It is found that the grinding wheel speed has a significant influence on residual stress measured in the WC phase. Etching by Murakami generated smooth surface, which partly removed the near-surface residual stress quickly but cannot eliminate.


2018 ◽  
Vol 224 ◽  
pp. 01066
Author(s):  
Anton Seleznev ◽  
Anton Smirnov ◽  
Pavel Peretyagin

The work represents a new approach of preliminary surface treatment of replaceable polyhedral cutting ceramics inserts for significant increase of adhesion strength with deposited wear-resistant nitride ceramics. By this method the hydrojet treatment was used to repair surface defects occurring during manufacturing process of any required geometry of cutting inserts.


2011 ◽  
Vol 496 ◽  
pp. 80-85 ◽  
Author(s):  
V.P. Tabakov

The study has shown a correlation between the machining conditions and peculiarities of damage occurring to wear-resistant coatings in the process of cutting. The study has made it possible to formulate requirements for wear-resistant coatings and the principle of forming multilayer coatings depending on machining conditions. The article presents study results illustrating the efficiency of cutting tools with multilayer coatings.


Sign in / Sign up

Export Citation Format

Share Document