Molecular Dynamics Simulations of Coupling between Flow and Heat Transfer in a Nanochannel
Simulation of microscale thermo-fluidic transport has attracted considerable attention in recent years owing to rapid advances in nanoscience and nanotechnology. The three-dimensional molecular dynamics simulations are performed for coupling between flow and heat transfer in a nanochannel. Effects of interface wettability, shear rate and wall temperature are discussed. It is found that there exist the relatively immobile solid-like layers adjacent to each solid wall with higher number density. Both slip length and Kapitza length at the solid-liquid interface increase linearly with the increasing wall temperature. The Kapitza length decreases monotonously with the increasing shear rates. The slip length is found to be overestimated by 5.10% to 10.27%, while Kapitza length is overestimated by 8.92% to 19.09% for the solid-solid interaction modeled by the Lennard-Jones potential.