Experimental Investigation of the Flow Field of Gas-Liquid Slug

2012 ◽  
Vol 468-471 ◽  
pp. 1802-1805
Author(s):  
Guo You Wang ◽  
Yin Dong Zhang

The oscillating motion occurring in an oscillating heat pipe (OHP) can enhance heat transfer. The fluid flow of liquid plugs trapped between the vapor bubbles play a key role in an OHP. Understanding the flow field of liquid plug moving in a capillary tube will provide an insight into the oscillating motion occurring in an OHP. An experimental setup of a liquid plug moving in a capillary tube was established to determine the flow field of a liquid plug using the microscale particle image velocimetry (µPIV) system. The motion of liquid plug was controlled by a computer-controlled system, which can produce a velocity ranging from 0.5 mm/s to 9 mm/s. The diameter of the capillary tube investigated herein is 1mm with a liquid plug length from 1.0 mm to 5.0 mm. The µPIV data clearly indicates the complex nature of liquid plug flow in a capillary tube trapped between two gas bubbles. Experimental results show that there exist circulations near the contact line. The circulation strength in a liquid plug depends on the liquid plug length and velocity of the liquid plug.

Author(s):  
Yifeng Wang ◽  
Jianzhong Lin ◽  
Ruijin Wang

Mixing multiple fluids based on plugs flow is a better approach in microfluidic system. In order to understand the mixing mechanism based on plug flow, theoretical analysis based on chaotic mixing was carried out, and a micro-resolution particle image velocimetry (Micro-PIV) is used to measure the flow field in liquid plug involving liquid species to be mixed. Two recirculation flows forming in plugs can enhance the mixing efficiency because folding and stretching of the liquids occured deterministically in plugs. In addition, the Lagrangian velocity were determinated on the basis of Eulerian velocity by subtracting this droplet velocity vector from the measured Eulerian velocity field of the tracing particles results inside the moving droplet. These results are helpful to optimize the structure of micromixer and develop droplet based microfluidic system.


2002 ◽  
Vol 33 (6) ◽  
pp. 794-800 ◽  
Author(s):  
U. Dierksheide ◽  
P. Meyer ◽  
T. Hovestadt ◽  
W. Hentschel

2021 ◽  
pp. 146808742110131
Author(s):  
Xiaohang Fang ◽  
Li Shen ◽  
Christopher Willman ◽  
Rachel Magnanon ◽  
Giuseppe Virelli ◽  
...  

In this article, different manifold reduction techniques are implemented for the post-processing of Particle Image Velocimetry (PIV) images from a Spark Ignition Direct Injection (SIDI) engine. The methods are proposed to help make a more objective comparison between Reynolds-averaged Navier-Stokes (RANS) simulations and PIV experiments when Cycle-to-Cycle Variations (CCV) are present in the flow field. The two different methods used here are based on Singular Value Decomposition (SVD) principles where Proper Orthogonal Decomposition (POD) and Kernel Principal Component Analysis (KPCA) are used for representing linear and non-linear manifold reduction techniques. To the authors’ best knowledge, this is the first time a non-linear manifold reduction technique, such as KPCA, has ever been used in the study of in-cylinder flow fields. Both qualitative and quantitative studies are given to show the capability of each method in validating the simulation and incorporating CCV for each engine cycle. Traditional Relevance Index (RI) and two other previously developed novel indexes: the Weighted Relevance Index (WRI) and the Weighted Magnitude Index (WMI), are used for the quantitative study. The results indicate that both POD and KPCA show improvements in capturing the main flow field features compared to ensemble-averaged PIV experimental data and single cycle experimental flow fields while capturing CCV. Both methods present similar quantitative accuracy when using the three indexes. However, challenges were highlighted in the POD method for the selection of the number of POD modes needed for a representative reconstruction. When the flow field region presents a Gaussian distribution, the KPCA method is seen to provide a more objective numerical process as the reconstructed flow field will see convergence with an increasing number of modes due to its usage of Gaussian properties. No additional criterion is needed to determine how to reconstruct the main flow field feature. Using KPCA can, therefore, reduce the amount of analysis needed in the process of extracting the main flow field while incorporating CCV.


Author(s):  
Johannes Gradl ◽  
Florian Schwertfirm ◽  
Hans-Christoph Schwarzer ◽  
Hans-Joachim Schmid ◽  
Michael Manhart ◽  
...  

Mixing and consequently fluid dynamic is a key parameter to tailor the particle size distribution (PSD) in nanoparticle precipitation. Due to fast and intensive mixing a static T-mixer configuration is capable for synthesizing continuously nanoparticles. The flow and concentration field of the applied mixer is investigated experimentally at different flow rates by Particle Image Velocimetry (PIV) and Laser Induced Fluorescence (LIF). Due to the PIV measurements the flow field in the mixer was characterized qualitatively and the mixing process itself is quantified by the subsequent LIF-measurements. A special feature of the LIF set up is to detect structures in the flow field, which are smaller than the Batchelor length. Thereby a detailed insight into the mixing process in a static T-Mixer is given. In this study a CFD-based approach using Direct Numerical Simulation (DNS) in combination with the solid formation kinetics solving population balance equations (PBE) is applied, using barium sulfate as modeling material. A Lagrangian Particle Tracking strategy is used to couple the flow field information with a micro mixing model and with the classical theory of nucleation. We found that the DNS-PBE approach including macro and micro mixing, combined with the population balance is capable of predicting the full PSD in nanoparticle precipitation for different operating parameters. Additionally to the resulting PSD, this approach delivers a 3D-information about all running subprocesses in the mixer, i.e. supersaturation built-up or nucleation, which is visualized for different process variables.


2010 ◽  
Vol 43 (6) ◽  
pp. 1039-1047 ◽  
Author(s):  
Emily J. Berg ◽  
Jessica L. Weisman ◽  
Michael J. Oldham ◽  
Risa J. Robinson

1998 ◽  
Vol 353 (1369) ◽  
pp. 691-700 ◽  
Author(s):  
Luca A. van Duren ◽  
Eize J. Stamhuis ◽  
John J. Videler

Females of the calanoid copepod Temora longicornis react to chemical exudates of male conspecifics with little hops, quite distinct from their normal smooth uniform swimming motion. These hops possibly serve to create a hydrodynamical signal in the surrounding water, to increase encounter probability with potential mates. Laser sheet particle image velocimetry was used to investigate the flow fields associated with these hops and to compare them to the flow of the feeding current of an adult female. During, and immediately after a hop, the flow field around the copepod showed a marked difference from that of a foraging animal. During foraging, the highest velocity gradients were located around the feeding appendages of the copepod. During a hop, high velocity gradients are located behind the animal. About 0.5 seconds after the start of swimming leg movement, effects of the hop had virtually dissipated and the flow field resembled that around a foraging animal. The estimated volume of influence (i.e. the volume around the copepod where the animal has a significant influence on the water) increased about 12–fold during the hop compared with the situation around a foraging animal. Furthermore, the rate of viscous energy dissipation within the copepods' volume of influence increased nearly 80–fold. Hops may serve to increase encounter probability, but due to the short duration of the effect and the high energetic costs they would only be adaptive when other cues have indicated that suitable sexual partners are in the vicinity.


Micromachines ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 668 ◽  
Author(s):  
Kanji Kaneko ◽  
Takayuki Osawa ◽  
Yukinori Kametani ◽  
Takeshi Hayakawa ◽  
Yosuke Hasegawa ◽  
...  

The steady streaming (SS) phenomenon is gaining increased attention in the microfluidics community, because it can generate net mass flow from zero-mean vibration. We developed numerical simulation and experimental measurement tools to analyze this vibration-induced flow, which has been challenging due to its unsteady nature. The validity of these analysis methods is confirmed by comparing the three-dimensional (3D) flow field and the resulting particle trajectories induced around a cylindrical micro-pillar under circular vibration. In the numerical modeling, we directly solved the flow in the Lagrangian frame so that the substrate with a micro-pillar becomes stationary, and the results were converted to a stationary Eulerian frame to compare with the experimental results. The present approach enables us to avoid the introduction of a moving boundary or infinitesimal perturbation approximation. The flow field obtained by the micron-resolution particle image velocimetry (micro-PIV) measurement supported the three-dimensionality observed in the numerical results, which could be important for controlling the mass transport and manipulating particulate objects in microfluidic systems.


Sign in / Sign up

Export Citation Format

Share Document