Failure Analysis of Carbon Fiber Reinforced Polymer (CFRP) Bridge Using Composite Material Failure Theories

2012 ◽  
Vol 488-489 ◽  
pp. 525-529
Author(s):  
S.T. Agusril ◽  
Norazman M. Nor ◽  
Zi Jun Zhao

Portable bridges are very important for maintaining mobility in the aftermath of natural disaster or in the battlefield. This requirement has lead to the needs for light-weight bridging system for ease in launching, retracting, transporting, and storing. In this research, a foldable bridge with three sections of beam connected together using the hinges connection has been designed and analyzed. The bridge is constructed using sandwich Carbon Fiber Reinforced Polymer (CFRP) which consists of CFRP and Aluminum Honeycomb, as the skin and core, respectively. The uses of materials are expected will reduce the total weight of bridge without decreasing of overall performance. Failure theories of composite material such as Maximum Stress, Maximum Strain, Tsai-Wu and Tsai-Hill failure theories were selected to generate an allowable strength graph. From the graph, can be seen that, the material stresses are in the allowable stress-strain ranges, therefore, the bridge is capable of carrying the design load with sufficient safety factor.

2019 ◽  
Vol 7 (1) ◽  
pp. 30-34
Author(s):  
A. Ajwad ◽  
U. Ilyas ◽  
N. Khadim ◽  
Abdullah ◽  
M.U. Rashid ◽  
...  

Carbon fiber reinforced polymer (CFRP) strips are widely used all over the globe as a repair and strengthening material for concrete elements. This paper looks at comparison of numerous methods to rehabilitate concrete beams with the use of CFRP sheet strips. This research work consists of 4 under-reinforced, properly cured RCC beams under two point loading test. One beam was loaded till failure, which was considered the control beam for comparison. Other 3 beams were load till the appearance of initial crack, which normally occurred at third-quarters of failure load and then repaired with different ratios and design of CFRP sheet strips. Afterwards, the repaired beams were loaded again till failure and the results were compared with control beam. Deflections and ultimate load were noted for all concrete beams. It was found out the use of CFRP sheet strips did increase the maximum load bearing capacity of cracked beams, although their behavior was more brittle as compared with control beam.


Author(s):  
E. A. Nikolaeva ◽  
A. N. Timofeev ◽  
K. V. Mikhaylovskiy

This article describes the results of the development of a high thermal conductivity carbon fiber reinforced polymer based on carbon fiber from pitch and an ENPB matrix modified with a carbon powder of high thermal conductivity. Data of the technological scheme of production and the results of determining the physicomechanical and thermophysical characteristics of carbon fiber reinforced polymer are presented. 


Sign in / Sign up

Export Citation Format

Share Document