Soil Pore Space Fractal Dimensions Were Deduced Conversely by the Curve of Soil Water Retention

2012 ◽  
Vol 518-523 ◽  
pp. 4753-4760
Author(s):  
Hao Yun Hu ◽  
Zi Xiao Li ◽  
Yi Kai Hou ◽  
Liang Liu ◽  
Jian Wei Sun

The functional equations have been established between the soil water retention curve and the soil structures fractal dimension by fractal geometry theory. Based on the functional equations have the same or similar law form with Campbell law, Soil pore space fractal dimensions were deduced conversely by the curve of soil water retention, which not only reveal physics matter of Campbell law, but also can carry out fractal research of prediction of soil water retention. The comparison of predicted soil water retention with measured data shows that the proposed model can be used to describe various soil textures.

2017 ◽  
Vol 16 (4) ◽  
pp. 869-877
Author(s):  
Vasile Lucian Pavel ◽  
Florian Statescu ◽  
Dorin Cotiu.ca-Zauca ◽  
Gabriela Biali ◽  
Paula Cojocaru

Pedosphere ◽  
2006 ◽  
Vol 16 (2) ◽  
pp. 137-146 ◽  
Author(s):  
Guan-Hua HUANG ◽  
Ren-Duo ZHANG ◽  
Quan-Zhong HUANG

2014 ◽  
Vol 38 (3) ◽  
pp. 730-743 ◽  
Author(s):  
João Carlos Medeiros ◽  
Miguel Cooper ◽  
Jaqueline Dalla Rosa ◽  
Michel Grimaldi ◽  
Yves Coquet

Knowledge of the soil water retention curve (SWRC) is essential for understanding and modeling hydraulic processes in the soil. However, direct determination of the SWRC is time consuming and costly. In addition, it requires a large number of samples, due to the high spatial and temporal variability of soil hydraulic properties. An alternative is the use of models, called pedotransfer functions (PTFs), which estimate the SWRC from easy-to-measure properties. The aim of this paper was to test the accuracy of 16 point or parametric PTFs reported in the literature on different soils from the south and southeast of the State of Pará, Brazil. The PTFs tested were proposed by Pidgeon (1972), Lal (1979), Aina & Periaswamy (1985), Arruda et al. (1987), Dijkerman (1988), Vereecken et al. (1989), Batjes (1996), van den Berg et al. (1997), Tomasella et al. (2000), Hodnett & Tomasella (2002), Oliveira et al. (2002), and Barros (2010). We used a database that includes soil texture (sand, silt, and clay), bulk density, soil organic carbon, soil pH, cation exchange capacity, and the SWRC. Most of the PTFs tested did not show good performance in estimating the SWRC. The parametric PTFs, however, performed better than the point PTFs in assessing the SWRC in the tested region. Among the parametric PTFs, those proposed by Tomasella et al. (2000) achieved the best accuracy in estimating the empirical parameters of the van Genuchten (1980) model, especially when tested in the top soil layer.


2015 ◽  
Vol 68 (2) ◽  
pp. 207-213
Author(s):  
Luciana Portugal Menezes ◽  
Waldyr Lopes Oliveira Filho ◽  
Cláudio Henrique Carvalho Silva

AbstractReliable measurements of the Soil Water Retention Curve, SWRC, are necessary for solving unsaturated flow problems. In this sense, a method to obtain the SWRC of a silty sand using a flow pump, as well as details about procedures and some results, are herein presented. The overall conclusion is that the new method is very convenient, fully automated, and produces reliable results in a fast and easy way, making the technique very promising.


Author(s):  
Maria Laiane do Nascimento Silva ◽  
Paulo Leonel Libardi ◽  
Fernando Henrique Setti Gimenes

Sign in / Sign up

Export Citation Format

Share Document