An Investigation of Springback in U-Channel Sheet Metal by Finite Element Analysis

2012 ◽  
Vol 548 ◽  
pp. 456-460 ◽  
Author(s):  
Gopi Alagappan ◽  
Syed H. Masood ◽  
Xuan Zhi Wang

In sheet metal forming, springback is defined as an elastic material recovery after unloading of the forming tools. Springback causes variations and inconsistencies of final part dimensions. Therefore prediction of springback is very important for production of precise products used in automobile and aerospace industries. There are various parameters involved in the process of sheet metal forming, including Young’s modulus, coefficient of friction, Poisson’s ratio, blank thickness, blank length, die radius, punch radius and blank holder force. The aim of this paper is to investigate the springback of a U-channel part by finite element analysis (FEA) and to identify the influences of important parameters on the springback of advanced high strength steels (AHSS) using numerical simulation.

2011 ◽  
Vol 291-294 ◽  
pp. 381-384
Author(s):  
Xuan Zhi Wang ◽  
Syed H. Masood ◽  
Daron Ng ◽  
Omar Dawwas

Springback is one of main reason for inaccuracy of sheet metal formed product. Therefore prediction of springback is very important for production of precise products. Springback is an elastic material recovery after unloading of the forming tools, and causes variations and inconsistencies of final part dimensions. This is affected by various parameters involved in the process of sheet metal forming. The main aim of this paper is to investigate the springback of finished part by analysing and controlling the effects of the control parameters on the springback of advanced high strength steels (AHSS). This is done by modelling a deep-drawing process and analysing the results as determined on ANSYS finite element analysis software.


2012 ◽  
Vol 502 ◽  
pp. 36-40
Author(s):  
Ying Ke Hou ◽  
Shu Hui Li ◽  
Yi Xi Zhao ◽  
Zhong Qi Yu

Galling is a known failure mechanism in many sheet metal forming processes. It limits the lifetime of tools and the quality of the products is affected. In this study, U-channel stamping experiments are performed to investigate the galling behavior of the advanced high strength steels in sheet metal forming . The sheet materials used in the tests are DP590 and DP780. In addition to the DP steels, the mild steel B170P1 is tested as a reference material in this study. Experimental results indicate that galling problem becomes severe in the forming process and the galling tendency can be divided into three different stages. The results also show that sheet material and tool hardness have crucial effects on galling performance in the forming of advanced high strength steels. In this study, DP780 results in the most heaviest galling among the three types of sheet materials. Galling performance are improved with increased hardness of the forming tool.


Author(s):  
R. Mohanraj ◽  
S. Elangovan

Driven by an increasing demand from the aerospace industry, thin sheet forming of titanium and its alloys is gaining prominence in scientific research. The design and manufacture of aerospace components requires the utmost precision and accuracy. It is essential to have good control over the process parameters of the forming process. Processes such as incremental sheet metal forming (ISMF) are highly controlled in the current manufacturing environment, but improvements in geometric accuracy and thinning are still needed. Although ISMF has greater process competence for manufacturing airframe structures with minimal costs, the process has its own negative effect on geometric accuracy due to elastic springback and sheet thinning. In this study, finite element analysis and experimental work are performed, considering process parameters such as spindle speed, feed rate, step depth, and tool diameter, to study the geometric accuracy and thinning of Ti–6Al–4V alloy sheet, while incrementally forming an aerospace component with asymmetrical geometry. The results are useful for understanding the geometric accuracy and thinning effects on parts manufactured by single point incremental forming (SPIF). Results from finite element analysis and experimental work are compared and found to be in good agreement.


2015 ◽  
Vol 60 (3) ◽  
pp. 1881-1886
Author(s):  
J. Adamus ◽  
K. Dyja ◽  
M. Motyka

Abstract The paper presents a method for determining forming limit curves based on a combination of experiments with finite element analysis. In the experiment a set of 6 samples with different geometries underwent plastic deformation in stretch forming till the appearance of fracture. The heights of the stamped parts at fracture moment were measured. The sheet - metal forming process for each sample was numerically simulated using Finite Element Analysis (FEA). The values of the calculated plastic strains at the moment when the simulated cup reaches the height of the real cup at fracture initiation were marked on the FLC. FLCs for stainless steel sheets: ASM 5504, 5596 and 5599 have been determined. The resultant FLCs are then used in the numerical simulations of sheet - metal forming. A comparison between the strains in the numerically simulated drawn - parts and limit strains gives the information if the sheet - metal forming process was designed properly.


2007 ◽  
Vol 561-565 ◽  
pp. 1995-1998
Author(s):  
Ming He Chen ◽  
J.H. Li ◽  
Lin Gao ◽  
Dun Wen Zuo ◽  
Min Wang

In order to solve the problem existed in the numerical simulation of sheet metal forming for its use the strain-based forming limit diagram as criterion, which has the flaw of dependence on the strain paths, this paper develops the finite element analysis program based on the stress forming limit criterion applicable to the blank plastic forming technique, which follows the stress-strain transformation relationship when the sheet metal is undergoing plastic deformation, chooses Hill’s quadratic normal anisotropic criterion as computational model and selects the commercial finite element code Dynaform as its development environment. Also it be analyzed the finite element numerical simulation results of two deep drawing parts by the developed program module and realizes the prediction of sheet metal forming limit adopting the FLSD as criterion. The stress-based forming limit criterion for the developed program provides a new means to analyze the forming limit for the multistage sheet metal forming.


Sign in / Sign up

Export Citation Format

Share Document