Biosurfactant Production from Palm Oil Using Sequencing Batch Reactors: Effect of Cycle Time

2008 ◽  
Vol 55-57 ◽  
pp. 861-864
Author(s):  
O. Huayyai ◽  
Sumaeth Chavadej ◽  
R. Rujiravanit ◽  
M. Abe
2009 ◽  
Vol 100 (2) ◽  
pp. 812-818 ◽  
Author(s):  
Orathai Pornsunthorntawee ◽  
Sasiwan Maksung ◽  
Onsiri Huayyai ◽  
Ratana Rujiravanit ◽  
Sumaeth Chavadej

2010 ◽  
Vol 49 (2) ◽  
pp. 185-191 ◽  
Author(s):  
Sira Pansiripat ◽  
Orathai Pornsunthorntawee ◽  
Ratana Rujiravanit ◽  
Boonyarach Kitiyanan ◽  
Pastra Somboonthanate ◽  
...  

2001 ◽  
Vol 43 (3) ◽  
pp. 307-314 ◽  
Author(s):  
G. Yalmaz ◽  
I. Öztürk

The aim of the study was to investigate both the use of the SBR technology in biological ammonia removal from landfill leachate, and the suitability of raw landfill leachate as external carbon source in denitrification step. The SBR was fed with diluted leachate for the first 42 days and then the effluent of UASBR was used as the feed. The SBR was operated intermittently with a cycle time of 24 hours. The effluent NH4+-N values of less than 5 mg NH4+-N L-1 was consistently observed for the initial NH4+-N levels of as high as 1000 mg NH4+-N L-1. The nitrification rates for the first, second and third stages were found as 5.7, 46.8 and 102.8 mg NH4+-N L-1 h-1, respectively. The difference of the nitrification rates in the 2nd and 3rd stages originated from increasing adaptation of the sludge as well as increasing biomass concentration (10.5 mg NH4+-N g-1VSS h-1). No significant accumulation of NO2--N has been observed during the study and NO2--N/NOx--N ratios measured in the 1st aerobic phase and the SBR effluent were less than 7%. The denitrification rates for the second (raw leachate as carbon source) and the third (Ca(CH3COO)2 as carbon source) stages were determined as 45.7 mg NOx--N L-1 h-1 (or 9.85 mg NOx--N g-1VSS h-1) and 125.7 mg NOx--N L-1 h-1 (or 12.88 mg NOx--N g-1VSS h1), respectively.


2016 ◽  
Vol 15 (11) ◽  
pp. 2529-2535
Author(s):  
Mohammad Reza Alavi Moghaddam ◽  
Mohammad Hakimelahi ◽  
Seyed Hossein Hashemi

2021 ◽  
Vol 11 (7) ◽  
Author(s):  
Nur Syamimi Zaidi ◽  
Johan Sohaili ◽  
Khalida Muda ◽  
Mika Sillanpää ◽  
Norelyza Hussein

AbstractLow condition of dissolved oxygen (DO) is commonly associated with sludge bulking problem that was able to disrupt the efficiency of wastewater treatment performances. Relatively, very little attention was paid to the possibility of applying magnetic field in controlling the bulking problem. Hence, this study aims to investigate the performance of magnetic field on biomass properties and its effect on biodegradation under low condition of DO. Two continuous laboratory-scale sequencing batch reactors—Reactor A (SBRA) and Reactor B (SBRB)—were setup. SBRA was equipped with the magnetic device to exhibit magnetic field of 88 mT, while SBRB acted as a control system. The results showed that the biomass concentration in SBRA was higher compared to SBRB. High biomass concentration in SBRA resulted to better settleability with mean SVI of less than 30 mL/g. SBRA also showed consistently high removal performances of organic and inorganic contents compared to SBRB. These observations confirmed that the magnetic field was able to enhance the biomass properties, which further enhance the biodegradation ability of the aerobic bacteria under low DO condition. This also indicates that under the sludge bulking circumstances, the use of magnetic field stands a great chance in maintaining high biodegradation of the treatment system.


Sign in / Sign up

Export Citation Format

Share Document