Ultra-Low Interfacial Tension and Retention of Internal Olefin Sulfonate (IOS) for EOR

2012 ◽  
Vol 550-553 ◽  
pp. 36-39 ◽  
Author(s):  
Li Mei Sun ◽  
Guo Qiang Gao ◽  
Lu Shan Wang ◽  
Zhong Qiang Tian ◽  
Jie Cui ◽  
...  

Surfactant ultra-low interfacial tension (IFT) for internal olefin sulfonate with iso-amylalcohol (IAA) as co-solvent against heptane, octane and decane at 20 °C, 50 °C, and 90 °C respectively have been systematically investigated, as well as the dynamic retention in porous media. The results show for oils with alkane carbon number from 7 to 10 and temperature from 20 °C to 90 °C, optimal salinity starts from 6.5 wt% to 11.6 wt% NaCl, where ultra-low IFT occurs. While at high salinity (at least from 6 wt% NaCl ), the retention is too high for surfactant flooding to be applicable. Only internal olefin sulfonate with co-solvent alone can not provide a perfect formulation with ultra-low IFT and low retention.

SPE Journal ◽  
2019 ◽  
Vol 24 (06) ◽  
pp. 2758-2775 ◽  
Author(s):  
Martijn T. Janssen ◽  
Pacelli L. Zitha ◽  
Rashidah M. Pilus

Summary Alkaline/surfactant/foam (ASF) flooding is a novel enhanced–oil–recovery (EOR) process that increases oil recovery over waterflooding by combining foaming with a decrease in the oil/water interfacial tension (IFT) by two to three orders of magnitude. We conducted an experimental study regarding the formation of an oil bank and its displacement by foam drives with foam qualities within the range of 57 to 97%. The experiments included bulk phase behavior tests using n–hexadecane and a single internal olefin sulfonate surfactant, and a series of computed–tomography (CT) –scanned coreflood experiments using Bentheimer Sandstone cores. The main goal of this study was to investigate the effect of drive–foam quality on oil–bank displacement. The surfactant formulation was found to lower the oil/water IFT by at least two orders of magnitude. Coreflood results, at under-optimum salinity conditions yielding an oil/water IFT on the order of 10–1 mN/m, showed similar ultimate–oil–recovery factors for the range of drive–foam qualities studied. A more distinct frontal oil–bank displacement was observed at lower drive–foam qualities investigated, yielding an increased oil–production rate. The findings in this study suggested that dispersive characteristics at the leading edge of the generated oil bank in this work were strongly related to the surfactant slug size used, the lowest drive–foam quality assessed yielded the highest apparent foam viscosity (and, thus, the most stable oil–bank displacement), and drive–foam strength increased upon touching the oil bank when using drive–foam qualities of 57 and 77%.


2011 ◽  
Vol 71-78 ◽  
pp. 2163-2168 ◽  
Author(s):  
Xin Liang ◽  
Ming Hui Xiang ◽  
Yong Yang ◽  
Qi Hua Chen ◽  
Zeng Rong Shu

To obtain the ultra-low interfacial tension foam flooding system for the real reservoir condition of high-temperature and high-salinity, foam properties and dynamic interfacial tension had been performed by Ross-miles test and spin drop tension meter respectively. Ten types of surfactants were screened by foamability, stability and interfacial tension (IFT) at 85°C, high-salinity with 800 mg/L divalent cations and 30000 mg/L total mineralization. The AOS, AESO and 20YB were selected to compose further anion-nonionic mixture system. Due to AOS had excellent foam properties, AESO could achieve low interfacial tension and 20YB could improve the film quality. Through series complex study, the ultra-low interfacial tension (10-4 mN/m order of magnitude) foam system was obtained with the composition of 0.15% wt AOS+0.15% wt AESO+0.11%~0.012% wt 20YB for high-temperature and high-salinity, which V foam was 240-235 mL and t 0.5 was 180-190 min. In addition, the synergistic effect of these surfactants had been described.


2017 ◽  
Vol 890 ◽  
pp. 235-238 ◽  
Author(s):  
Chitipat Chuaicham ◽  
Kreangkrai Maneeintr

To enhance oil recovery, surfactant flooding is one of the techniques used to reduce the interfacial tension (IFT) between displacing and displaced phases in order to maximize productivity. Due to high salinity of crude oil in the North of Thailand, surfactant flooding is a suitable choice to perform enhanced oil recovery. The objective of this work is to measure the IFT and observe the effects of parameters such as pressure, temperature, concentration and salinity on IFT reduction. In this study, sodium dodecylbenzenesulfonate is used as surfactant to reduce IFT. The results show that the major factor affecting reduction of IFT is surfactant concentration accounting for 98.1%. IFT reduces with the increase of salinity up to 86.3% and up to 9.6% for temperature. However, pressure has less effect on IFT reduction. The results of this work can apply to increase oil production in the oilfield in the North of Thailand.


1973 ◽  
Vol 13 (04) ◽  
pp. 191-199 ◽  
Author(s):  
Walter W. Gale ◽  
Erik I. Sandvik

Abstract This paper discusses results of a laboratory program undertaken to define optimum petroleum program undertaken to define optimum petroleum sulfonates for use in surfactant flooding. Many refinery feedstocks, varying in molecular weight and aromatic content, were sulfonated using different processes, Resulting sulfonates were evaluated by measuring interracial tensions, adsorption-fractionation behavior, brine compatability, and oil recovery characteristics, as well as by estimating potential manufacturing costs. The best combination o[ these properties is achieved when highly aromatic feedstocks are sulfonated to yield surfactants having very broad equivalent weight distributions. Components of the high end of the equivalent weight distribution make an essential contribution to interfacial tension depression. This portion is also strongly adsorbed on mineral surfaces and has low water solubility. Middle Portions of the equivalent weight distribution serve as sacrificial adsorbates while lower equivalent weight components Junction as micellar solubilizers for heavy constituents. Results from linear laboratory oil-recovery tests demonstrate interactions of various portions of the equivalent weight distribution. portions of the equivalent weight distribution Introduction Four major criteria used in selecting a surfactant for a tertiary oil-recovery process are:low oil-water interfacial tension,low adsorption,compatibility with reservoir fluids andlow cost. Low interfacial tension reduces capillary forces trapping residual oil in porous media allowing the oil to be recovered. Attraction of surfactant to oil-water interfaces permits reduction of interfacial tension; however, attraction to rock-water interfaces can result in loss of surfactant to rock surfaces by adsorption. Surfactant losses can also arise from precipitation due to incompatibility with reservoir fluids. Low adsorption and low cost are primarily economic considerations, whereas low interfacial tension and compatibility are necessary for workability of the process itself. Petroleum sulfonates useful in surfactant flooding have been disclosed in several patents; however, virtually no detailed information is available in the nonpatent technical literature. Laboratory evaluation of surfactants consisted of determining their adsorption, interfacial tension, and oil recovery properties. Adsorption measurements were made by static equilibration of surfactant solutions with crushed rock and clays and by flowing surfactant solutions through various types of cores. Interfacial tensions were measured using pendant drop and capillary rise techniques. Berea, pendant drop and capillary rise techniques. Berea, Bartlesville, and in some cases, field cores containing brine and residual oil were flooded with sulfonate solutions in order to determine oil recovery. Fluids used in these displacement tests are described in Table 1. Unless otherwise specified, displacements of Borregos crude oil were carried out with Catahoula water as the resident aqueous phase after waterflooding and displacements of phase after waterflooding and displacements of Loudon crude oil with 1.5 percent NaCl as the resident aqueous phase. In those examples where banks of surfactants were injected, drive water following the surfactant had the same composition as the resident water. Concentrations of sulfonates are reported on a 100-percent activity basis. PETROLEUM SULFONATE CHEMISTRY PETROLEUM SULFONATE CHEMISTRY A substantial portion of the total research effort TABLE 1 - PROPERTIES OF FLUIDS USEDIN FLOODING TESTS


2017 ◽  
Vol 31 (12) ◽  
pp. 13416-13426 ◽  
Author(s):  
Jiaping Tao ◽  
Caili Dai ◽  
Wanli Kang ◽  
Guang Zhao ◽  
Yifei Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document