Design and Implementation of the Control System for Two-Wheeled Self-Balancing Vehicles

2012 ◽  
Vol 588-589 ◽  
pp. 1606-1610 ◽  
Author(s):  
Min Dai ◽  
Jian Wang ◽  
Xiao Gang Sun ◽  
Shuang Hu ◽  
Jun Xiang Jia

A control-system design for a two-wheeled self-balancing vehicle is discussed in this paper. We have developed a low-cost hardware platform based on AVR MCU, accelerometer sensor and gyroscope sensor, for which the critical circuits, such as sensors and motor driver, are introduced. The control strategy operates by two steps: a) securing the real-time vehicle posture by integrating the data from accelerometer and gyroscope sensors; b) using a closed-loop PID controller to keep the vehicle balanced. This control system is applied to a prototype two-wheeled self-balancing vehicle, whose performance has turned out to be a satisfaction.

2021 ◽  
pp. 315-324
Author(s):  
Álvaro Michelena ◽  
Francico Zayas-Gato ◽  
Esteban Jove ◽  
José-Luis Casteleiro-Roca ◽  
Héctor Quintián ◽  
...  

Robotica ◽  
1989 ◽  
Vol 7 (4) ◽  
pp. 303-308 ◽  
Author(s):  
G. M. Bone ◽  
M. A. Elbestawi

SUMMARYAn active force control system for robotic deburring based on an active end effector is developed. The system utilizes a PUMA-560 six axis robot. The robot's structural dynamics, positioning errors, and the deburring cutting process are examined in detail. Based on ARMAX plant models identified using the least squares method, a discrete PID controller is designed and tested in real-time. The control system is shown to maintain the force within l N of the reference, and reduce chamfer depth errors to 0.12 mm from the 1 mm possible without closed-loop control.


Sign in / Sign up

Export Citation Format

Share Document