Controlling Chaos in Power System Based on Tridiagonal Structure Matrix Stability Theory

2012 ◽  
Vol 588-589 ◽  
pp. 622-625
Author(s):  
Hong Jun Wang ◽  
Zhe Zhe Han ◽  
Hui Zhao Hui ◽  
You Jun Yue

In the case of periodic load disturbance, the chaos oscillation phenomena may caused by power system to threaten the safety operation of the network. In order to solve this problem, this paper presents the strategy on tridiagonal structure matrix stability theory. Using the designed controller, the chaotic system operation state turn into a stable operation state, and system is stabilized an unstable nonzero equilibrium point.

2014 ◽  
Vol 978 ◽  
pp. 67-71 ◽  
Author(s):  
Pei Lin Li

With the popularization and application of electric vehicles, charging and discharging load will bring new challenges to safe and stable operation of the power grids. Charging and discharging control is becoming an important power system operation strategy as well as generation dispatch. A volume of research has been devoted to charging control (including vehicle-to-grid, so-called V2G) which can not only alleviate the adverse effects of charging load but also support the grid operation such as leveling the load and promoting the integration of renewable generation. This paper analyzes the impact of electric vehicles charging and discharging on the power system.


2011 ◽  
Vol 20 (12) ◽  
pp. 120501 ◽  
Author(s):  
Hui Zhao ◽  
Ya-Jun Ma ◽  
Si-Jia Liu ◽  
Shi-Gen Gao ◽  
Dan Zhong

2011 ◽  
Vol 131 (8) ◽  
pp. 670-676 ◽  
Author(s):  
Naoto Yorino ◽  
Yutaka Sasaki ◽  
Shoki Fujita ◽  
Yoshifumi Zoka ◽  
Yoshiharu Okumoto

Author(s):  
Andrés Honrubia‐Escribano ◽  
Raquel Villena‐Ruiz ◽  
Estefanía Artigao ◽  
Emilio Gómez‐Lázaro ◽  
Ana Morales

Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 634
Author(s):  
Sujeong Baek ◽  
Dong Oh Kim

In manufacturing systems, pick-up operations by vacuum grippers may fail owing to manufacturing errors in an object’s surface that are within the allowable tolerance limits. In such situations, manual interference is required to resume system operation, which results in considerable loss of time as well as economic losses. Although vacuum grippers have many advantages and are widely used in the industry, it is highly difficult to directly monitor the current machine status and provide appropriate recovery feedback for stable operation. Therefore, this paper proposes a method to detect the success or failure of a suction operation in advance by analyzing the amount of outlet air pressure in the Venturi line. This was achieved by installing an air pressure sensor on the Venturi line to predict whether the current suction action will be successful. Through empirical experiments, it was found that downward movements in the z-axis of the vacuum gripper can easily rectify a faulty gripper suction operation. Real-time monitoring results verified that predictive process adjustment of the pick-up operation can be performed by modifying the z-position of the vacuum gripper.


Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1598
Author(s):  
Dongmin Kim ◽  
Kipo Yoon ◽  
Soo Hyoung Lee ◽  
Jung-Wook Park

The energy storage system (ESS) is developing into a very important element for the stable operation of power systems. An ESS is characterized by rapid control, free charging, and discharging. Because of these characteristics, it can efficiently respond to sudden events that affect the power system and can help to resolve congested lines caused by the excessive output of distributed generators (DGs) using renewable energy sources (RESs). In order to efficiently and economically install new ESSs in the power system, the following two factors must be considered: the optimal installation placements and the optimal sizes of ESSs. Many studies have explored the optimal installation placement and the sizing of ESSs by using analytical approaches, mathematical optimization techniques, and artificial intelligence. This paper presents an algorithm to determine the optimal installation placement and sizing of ESSs for a virtual multi-slack (VMS) operation based on a power sensitivity analysis in a stand-alone microgrid. Through the proposed algorithm, the optimal installation placement can be determined by a simple calculation based on a power sensitivity matrix, and the optimal sizing of the ESS for the determined placement can be obtained at the same time. The algorithm is verified through several case studies in a stand-alone microgrid based on practical power system data. The results of the proposed algorithm show that installing ESSs in the optimal placement could improve the voltage stability of the microgrid. The sizing of the newly installed ESS was also properly determined.


Sign in / Sign up

Export Citation Format

Share Document