Three Dimensional Modeling of Buildings Using Three Dimensional Laser Scanning Data

2012 ◽  
Vol 594-597 ◽  
pp. 2398-2401
Author(s):  
Dong Ling Ma ◽  
Jian Cui ◽  
Fei Cai

This paper provides a scheme to construct three dimensional (3D) model fast using laser scanning data. In the approach, firstly, laser point cloud are scanned from different scan positions and the point cloud coming from neighbor scan stations are spliced automatically to combine a uniform point cloud model, and then feature lines are extracted through the point cloud, and the framework of the building are extracted to generate 3D models. At last, a conclusion can be drawn that 3D visualization model can be generated quickly using 3D laser scanning technology. The experiment result shows that it will bring the application model and technical advantage which traditional mapping way can not have.

2012 ◽  
Vol 476-478 ◽  
pp. 2411-2414
Author(s):  
Qiu Long Liu ◽  
Wu Sheng Hu

3D (three-dimensional) laser scanning can be used to collect spatial location of points rapidly and abundantly, and obtain three-dimensional coordinates of the target surface, which provides new technical means for the rapid creation of three-dimensional image model of the object. A three-dimensional modeling study on spatial object was carried out using the spatial data captured via ground-based 3D laser scanner in the Hui-Quan substation. The experiment result shows that rapid 3D visualization modeling on buildings can be achieved via the methods and procedures mentioned above. It has solved that the traditional equipment and the measuring technique is insufficiency in the special domain. It will bring the application mode and technical advantage, which tradition mapping way can not have. A platform for three-dimensional model of the substation can be achieved for the resources, landscape, security, environmental management and other social resources of digital, networked and dynamic visualization.By taking WuXi Hui-Quan Substation as the research object, building 3D models by Three-dimensional laser scanning technology and embedding 3D-GIS, Meanwhile, combining existing 2D-geographical spatial data, data preparation, construction of 3D-model, 3D-visualization, space inquiry and analysis, information management are given systematic analysis and research. In the end, in the programming environment of C#2.0, Skyline software is employed with its open Application Programmed Interface (API), which constructs 3D-scenes and 3D-terrain models of WuXi Hui-Quan Substation and comes to the realization of 3D-visualization, property inquiry and edit of Attribute data.


2021 ◽  
Vol 16 (2) ◽  
pp. 0
Author(s):  
Alina Ageeva

This article highlights the issues of creating 3D models of urban systems using an agent-based approach according to the implementation of the concept of a "smart city" and building a digital ecosystem for "smart" city management. The issues of creating digital models of cities used as a virtual environment for agent-based models of urban systems are overviewed. The main approaches to the creation of 3D agent-based models (with the functions of three-dimensional data analysis) to simulate various aspects of urban processes are listed. Conclusions about the reasons for the existing lack of attention of researchers to the issues of 3D visualization of agent-based models are presented.


Author(s):  
C. Altuntas

<p><strong>Abstract.</strong> Image based dense point cloud creation is easy and low-cost application for three dimensional digitization of small and large scale objects and surfaces. It is especially attractive method for cultural heritage documentation. Reprojection error on conjugate keypoints indicates accuracy of the model and keypoint localisation in this method. In addition, sequential registration of the images from large scale historical buildings creates big cumulative registration error. Thus, accuracy of the model should be increased with the control points or loop close imaging. The registration of point point cloud model into the georeference system is performed using control points. In this study historical Sultan Selim Mosque that was built in sixteen century by Great Architect Sinan was modelled via photogrammetric dense point cloud. The reprojection error and number of keypoints were evaluated for different base/length ratio. In addition, georeferencing accuracy was evaluated with many configuration of control points with loop and without loop closure imaging.</p>


2021 ◽  
Vol 20 (7) ◽  
pp. 48-61
Author(s):  
Pavel V. Chistyakov ◽  
Ekaterina N. Bocharova ◽  
Ksenia A. Kolobova

This article provides a detailed account of the process of scanning, post-processing and further manipulation of three-dimensional models obtained with structured light scanners. Purpose. The purpose of the study is determined by the need for national archaeologists to learn the methods of three-dimensional modeling for the implementation of scientific research corresponding to international standards. Unfortunately, this direction in national archaeology began to develop in a relatively recent time and there is a lag in the application of three-dimensional modeling of national archaeology compared to the world level. Results. Any archaeological, experimental or ethnographic artifact can be used for three-dimensional scanning. To perform post-processing of three-dimensional models it is necessary to carry out primary scanning of an artifact by one of the existing algorithms. The algorithm for creating models, their positioning, simplification, saving in various formats and export is described. The main sequence of 3D models post-processing includes: processing of groups of scanned projections (their cleaning and alignment), creation of artifact model and processing/rectification of the resulting model using special software. Conclusion. As a result of correct implementation of the algorithm, the researcher receives a scaled model completely corresponding to the original artifact. Obtaining a scalable, texture-free three-dimensional model of the artifact, which fully corresponds to the original and exceeds a photograph in the quality of detail transfer, allows a scientist to conduct precise metric measurements and any procedures of non-invasive manipulation of the models. The ability to access a database of three-dimensional models of archaeological collections greatly simplifies the work of archaeologists, especially in situations when country borders are closed.


2005 ◽  
Author(s):  
Tao Wang ◽  
Jianquan Yao ◽  
Ling Guo ◽  
Binjing Cai ◽  
Yang Lu ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (15) ◽  
pp. 3345 ◽  
Author(s):  
Guoxiang Sun ◽  
Xiaochan Wang ◽  
Ye Sun ◽  
Yongqian Ding ◽  
Wei Lu

Nondestructive plant growth measurement is essential for researching plant growth and health. A nondestructive measurement system to retrieve plant information includes the measurement of morphological and physiological information, but most systems use two independent measurement systems for the two types of characteristics. In this study, a highly integrated, multispectral, three-dimensional (3D) nondestructive measurement system for greenhouse tomato plants was designed. The system used a Kinect sensor, an SOC710 hyperspectral imager, an electric rotary table, and other components. A heterogeneous sensing image registration technique based on the Fourier transform was proposed, which was used to register the SOC710 multispectral reflectance in the Kinect depth image coordinate system. Furthermore, a 3D multiview RGB-D image-reconstruction method based on the pose estimation and self-calibration of the Kinect sensor was developed to reconstruct a multispectral 3D point cloud model of the tomato plant. An experiment was conducted to measure plant canopy chlorophyll and the relative chlorophyll content was measured by the soil and plant analyzer development (SPAD) measurement model based on a 3D multispectral point cloud model and a single-view point cloud model and its performance was compared and analyzed. The results revealed that the measurement model established by using the characteristic variables from the multiview point cloud model was superior to the one established using the variables from the single-view point cloud model. Therefore, the multispectral 3D reconstruction approach is able to reconstruct the plant multispectral 3D point cloud model, which optimizes the traditional two-dimensional image-based SPAD measurement method and can obtain a precise and efficient high-throughput measurement of plant chlorophyll.


2012 ◽  
Vol 256-259 ◽  
pp. 2315-2319
Author(s):  
Wen Long Liu ◽  
Xiao Ping Zhao ◽  
Xiao Long Wang ◽  
Bao Guo Xu ◽  
De Tao Lv

This paper makes use of the three-dimensional laser scanning technology measurement speed and high precision which combines the advantage of the field control survey, coordinate system transformation, the point cloud data processing, establish the triangle nets, texture mapping etc process, get the space of ancient cultural relics data and texture, antiquities for 3D modeling provide real, real size, real texture digital model for reference.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Acheng Zhou ◽  
Chao Gao

Currently, there is less research on how to improve the efficiency of the application of computer graphics technology in the creation of public sculpture. Therefore, this paper will focus on how computer graphics algorithms can enable systems for the creation of public sculpture with the intervention of computer graphics technology to create more accurate and completed works of public sculpture. It will explore and analyze how computer image algorithms can help creators apply computer image technology to finish complete and accurate public sculptures, and individual studies, computer imagery, and model analysis are also used. In systems for the creation of public sculpture, the point cloud data of the model is obtained through 3D laser scanning technology; then the algorithm of the point cloud model is integrated and the Statistical Outlier Removal algorithm of the point cloud model intervention is processed. By this way, the point cloud model of the work is optimized, and then a more completed and accurate public sculpture work can be produced by 3D sculpting or 3D printing. The research shows that, in the creation of public sculptures with the intervention of computer graphics technology, the computer graphics algorithm acquires the basis of the high-definition public sculpture data model. The computer graphics algorithm improves the accuracy and completeness of the creator using computer graphics technology; it is also the key to transform the accurate enlargement and transformation of the sculptural model into the actual sculptural work.


2015 ◽  
Vol 9 (1) ◽  
pp. 152-157
Author(s):  
Cheng Jie ◽  
Chen Li

Fabric surface analysis, as part of fabric analysis, is very important for the textile manufacturing process and is traditionally based on human-labor or image processing which is a conventional automatic method. However, image quality is influenced by ambient light, background light and optical properties of the surface. In this paper, we present a three dimensional modeling techniques for the reconstruction of carbon-fiber fabric surface. Firstly, a dense and scattered points cloud is collected using 3D laser scanning system after necessary data quality analysis. Secondly, the original points cloud is preprocessed according to classification. Finally, three-dimensional fabric surface model is reconstructed using screened Poisson reconstruction algorithm. The experimental results show that the reconstructed model is acceptable.


Sign in / Sign up

Export Citation Format

Share Document