An Overview of Fire Risk and Fire Protection Solutions for Wind Turbines

2012 ◽  
Vol 608-609 ◽  
pp. 500-505
Author(s):  
Ying Xin Wang ◽  
Hui Xing ◽  
Zhan Hua Wu ◽  
Shu Lin Duan

To search effective technical solutions to control fire risk of wind turbines, based on the risk system composed of “Human- Equipment - Environment – Management” in safety systems engineering theory, the four main aspects of wind turbines fire risk, i.e., lightning strikes and bad weather, mechanical and electrical equipment failure, human errors and poor management and fire protection systems missing, were pointed out. The fire risk and fire risk control measures of wind turbines were analyzed, the progress of fire detection technology and fire protection solutions of wind turbines were reviewed. The results show that, to develop and equip with high-performance automatic fire detection, alarm and extinguishing systems is the inevitable choice to effectively control the fire risk of wind turbines.

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Fateme Omidvari ◽  
Mehdi Jahangiri ◽  
Reza Mehryar ◽  
Moslem Alimohammadlou ◽  
Mojtaba Kamalinia

Fire is one of the most dangerous phenomena causing major casualties and financial losses in hospitals and healthcare settings. In order to prevent and control the fire sources, first risk assessment should be conducted. Failure Mode and Effect Analysis (FMEA) is one of the techniques widely used for risk assessment. However, Risk Priority Number (RPN) in this technique does not take into account the weight of the risk parameters. In addition, indirect relationships between risk parameters and expert opinions are not considered in decision making in this method. The aim is to conduct fire risk assessment of healthcare setting using the application of FMEA combined with Multi‐Criteria Decision Making (MCDM) methods. First, a review of previous studies on fire risk assessment was conducted and existing rules were identified. Then, the factors influencing fire risk were classified according to FMEA criteria. In the next step, weights of fire risk criteria and subcriteria were determined using Intuitionistic Fuzzy Multiplicative Best-Worst Method (IFMBWM) and different wards of the hospital were ranked using Interval-Valued Intuitionistic Fuzzy Combinative Distance-based Assessment (IVIFCODAS) method. Finally, a case study was performed in one of the hospitals of Shiraz University of Medical Sciences. In this study, fire alarm system (0.4995), electrical equipment and installations (0.277), and flammable materials (0.1065) had the highest weight, respectively. The hospital powerhouse also had the highest fire risk, due to the lack of fire extinguishers, alarms and fire detection, facilities located in the basement floor, boilers and explosive sensitivity, insufficient access, and housekeeping. The use of MCDM methods in combination with the FMEA method assesses the risk of fire in hospitals and health centers with great accuracy.


2020 ◽  
Vol 11 (7-2020) ◽  
pp. 66-72
Author(s):  
Liubov A. Belova ◽  

The earth-termination system for towers of ground-based wind turbines in addition to protective and functional grounding provides lightning protection grounding, which is especially important since the wind turbine is susceptible to lightning strikes. If insufficient protective measures are taken, the risk of damage to a wind turbine due to a lightning strike increases. Therefore, a well-thought-out built-in grounding system for wind turbine towers is needed, which would function as necessary and guarantee long-term mechanical strength and corrosion resistance. The configuration of grounding systems for wind turbines is discussed in IEC 61400-24, which deals with the topic of lightning protection for wind turbines, including detailed information on the choice of lightning protection measures and surge protection. It is advisable to create a lightning protection concept at the initial stage of planning a wind turbine in order to avoid later costly repairs and retrofitting.


The frequency of the forest fires that have occurred in the different parts of the world, In recent decades significant population problems and causing the death if the wild animals as the impact of these fires extend beyond the destruction of the natural habitats. The proliferation of the Internet of Things industry, resolutions for initial fire detection should be developed. The valuation of the fire risk of an area and communication of this realities to the population could reduce the amount of fires originated by accident or due to carelessness of the public user. This paper proposes a low-cost network based on NXP Rapid IOT kit and Long Range (Lora) technology to autonomously estimate the level of fire risk in the forest. The system comprises of NXP Rapid IOT kit which humidity, air quality and detection of the tree fall. The data from each node stored and processed in a in a web server or the mobile application that sendsthe recorded data to a web server for graphical conception of collected data.


2020 ◽  
Vol 23 (6) ◽  
pp. 673-683
Author(s):  
Taylan G. Topcu ◽  
Konstantinos Triantis ◽  
Richard Malak ◽  
Paul Collopy

Sign in / Sign up

Export Citation Format

Share Document