A Study on Coupled Bending and Torsional Vibrations of Wind Turbine Blades

2012 ◽  
Vol 622-623 ◽  
pp. 1236-1242 ◽  
Author(s):  
Mary V. Bastawrous ◽  
Ayman A. El-Badawy

A parametric study is developed to investigate the effect of geometry, material stiffness and the rotational motion on the coupled flapwise bending and torsional vibration modes of a wind turbine blade. The assumed modes method is used to discretize the derived kinetic and potential energy terms. Lagrange’s equations are used to derive the modal equations from the discretized terms, which are solved for the vibration frequencies. The parametric study utilizes dimensional analysis techniques to study the collective influence of the investigated parameters by combining them into few non-dimensional parameters, thus providing deeper insight to the physics of the dynamic response. Results would be useful in providing rules and guidelines to be used in blade design.

Author(s):  
Sourabh Deshpande ◽  
Nithin Rao ◽  
Nitin Pradhan ◽  
John L. Irwin

Utilizing the advantages of additive manufacturing methods, redesigning, building and testing of an existing integral Savonius / Darrieus “Lenz2 Wing” style vertical axis wind turbine is predicted to improve power generation efficiency. The current wind turbine blades and supports made from aluminum plate and sheet are limiting the power generation due to the overall weight. The new design is predicted to increase power generation when compared to the current design due to the lightweight spiral Darrieus shaped hollow blade made possible by 3D printing, along with an internal Savonius blade made from aluminum sheet and traditional manufacturing techniques. The design constraints include 3D printing the turbine blades in a 0.4 × 0.4 × 0.3 m work envelope while using a Stratasys Fortus 400mc and thus the wind turbine blades are split into multiple parts with dovetail joint features, when bonded together result in a 1.2 m tall working prototype. Appropriate allowance in the mating dovetail joints are considered to facilitate the fit and bonding, as well as angle, size and placement of the dovetail to maximize strength. The spiral shape and Darrieus style cross section of the blade that provides the required lift enabling it to rotate from the static condition are oriented laterally for 3D printing to maximize strength. The bonding of the dovetail joints is carried out effectively using an acetone solution dip. The auxiliary components of the wind turbine which include the center support pole, top and bottom support, and center Savonius blades are manufactured using lightweight aluminum. Design features are included in the 3D printed blade parts so that they can be assembled with the aluminum parts in bolted connections. Analysis of the 3D CAD models show that the hybrid aluminum and hollow 3D printed blade construction provides a 50% cost savings over a 3D printed fully solid blade design while minimizing weight and maximizing the strength where necessary. Analysis of the redesign includes a detailed weight comparison, structural strength and the cost of production. Results include linear static finite element analysis for the strength in dovetail joint bonding and the aluminum to 3D printed connections. Additional data reported are the time frame for the design and manufacturing of the system, budget, and an operational analysis of the wind turbine with concern for safety. Results are analyzed to determine the advantages in utilizing a hybrid additive manufacturing and aluminum construction for producing a more efficient vertical axis wind turbine. Techniques used in the production of this type of wind turbine blade are planned to be utilized in similar applications such as a lightweight hovercraft propeller blade design to be tested in future research projects.


2013 ◽  
Vol 380-384 ◽  
pp. 4336-4339
Author(s):  
Hua Xin ◽  
Chun Hua Zhang ◽  
Qing Guo Zhang ◽  
Ping Wang

Wind energy is an inexhaustible, an inexhaustible source of renewable and clean energy. Present due to the energy crisis and environmental protection and other issues, the use of wind more and more world attention. The wind turbine is the best form of wind energy conversion. Wind turbine wind turbine blades to capture wind energy is the core component of the blade in a natural environment to run directly in contact with air, with seagulls wings generate lift conditions are similar, so the gull wings airfoil and excellent conformation, with wind turbine blade design designed by combining the bionic blades. Through numerical simulation analysis found bionic blade aerodynamic performance than the standard blade aerodynamic performance has improved.


Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 1889 ◽  
Author(s):  
Xin Liu ◽  
Zheng Liu ◽  
Zhongwei Liang ◽  
Shun-Peng Zhu ◽  
José A. F. O. Correia ◽  
...  

The full-scale static testing of wind turbine blades is an effective means to verify the accuracy and rationality of the blade design, and it is an indispensable part in the blade certification process. In the full-scale static experiments, the strain of the wind turbine blade is related to the applied loads, loading positions, stiffness, deflection, and other factors. At present, researches focus on the analysis of blade failure causes, blade load-bearing capacity, and parameter measurement methods in addition to the correlation analysis between the strain and the applied loads primarily. However, they neglect the loading positions and blade displacements. The correlation among the strain and applied loads, loading positions, displacements, etc. is nonlinear; besides that, the number of design variables is numerous, and thus the calculation and prediction of the blade strain are quite complicated and difficult using traditional numerical methods. Moreover, in full-scale static testing, the number of measuring points and strain gauges are limited, so the test data have insufficient significance to the calibration of the blade design. This paper has performed a study on the new strain prediction method by introducing intelligent algorithms. Back propagation neural network (BPNN) improved by Particle Swarm Optimization (PSO) has significant advantages in dealing with non-linear fitting and multi-input parameters. Models based on BPNN improved by PSO (PSO-BPNN) have better robustness and accuracy. Based on the advantages of the neural network in dealing with complex problems, a strain-predictive PSO-BPNN model for full-scale static experiment of a certain wind turbine blade was established. In addition, the strain values for the unmeasured points were predicted. The accuracy of the PSO-BPNN prediction model was verified by comparing with the BPNN model and the simulation test. Both the applicability and usability of strain-predictive neural network models were verified by comparing the prediction results with simulation outcomes. The comparison results show that PSO-BPNN can be utilized to predict the strain of unmeasured points of wind turbine blades during static testing, and this provides more data for characteristic structural parameters calculation.


1999 ◽  
Vol 121 (3) ◽  
pp. 156-161 ◽  
Author(s):  
T. Kashef ◽  
S. R. Winterstein

Different wind parameters are studied to find a set that is most useful in estimating fatigue loads on wind turbine blades. The histograms of rainflow counted stress ranges are summarized through their first three statistical moments and regression analysis is used to estimate these moments in various wind conditions. A systematic method of comparing the ability of different wind parameters to estimate the moments is described and results are shown for flapwise loads on three HAWTs. In the case of two of these turbines, the stress ranges are shown to be highly correlated with a turbulence measure obtained by removing a portion of the low-frequency content of the wind.


Wind Energy ◽  
2015 ◽  
Vol 19 (3) ◽  
pp. 497-514 ◽  
Author(s):  
Pariya Pourazarm ◽  
Yahya Modarres-Sadeghi ◽  
Matthew Lackner

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1629
Author(s):  
Amrit Shankar Verma ◽  
Sandro Di Noi ◽  
Zhengru Ren ◽  
Zhiyu Jiang ◽  
Julie J. E. Teuwen

Leading edge erosion (LEE) repairs of wind turbine blades (WTBs) involve infield application of leading edge protection (LEP) solutions. The industry is currently aiming to use factory based LEP coatings that can applied to the WTBs before they are shipped out for installation. However, one of the main challenges related to these solutions is the choice of a minimum LEP application length to be applied in the spanwise direction of the WTBs. Generally, coating suppliers apply 10–20 m of LEP onto the blades starting from the tip of the blade using the “rule of thumb”, and no studies in the literature exist that stipulate how these LEP lengths can be calculated. In this study, we extend the scope of a recently developed long-term probabilistic framework to determine the minimum LEP application length required for WTBs to combat rain-induced erosion. A parametric study is performed where different wind turbines with varying power ratings of 2.1 MW to 15 MW at different Dutch sites ranging from inland to coastal are considered. The results of the study show that the LEP application length is sensitive to the choice of the site, as well as the turbine attributes. Further, LEP lengths for WTBs are found to be the highest for turbines installed at coastal sites and turbines with higher power ratings. A detailed investigation is further performed to check the sensitivity of the LEP application length with the wind turbine parameters. The results of the study are expected to provide guidelines to the industry for efficient repair strategies for WTBs.


2017 ◽  
Vol 19 (2) ◽  
pp. 1173-1184 ◽  
Author(s):  
Jianping Zhang ◽  
Fengfeng Shi ◽  
Helen Wu ◽  
Jianxing Ren ◽  
Hao Wang ◽  
...  

1996 ◽  
Vol 118 (4) ◽  
pp. 204-211 ◽  
Author(s):  
H. J. Sutherland

The fatigue analysis of a wind turbine blade typically depends on converting time-series data to a series of load cycles using one of several cyclic counting algorithms. However, many structural analysis techniques yield frequency-domain stress spectra, and a large body of experimental loads (stress) data is reported in the frequency domain. To permit the fatigue analysis of this class of data, a series of computational algorithms based on Fourier analysis techniques has been developed. The principle underlying these algorithms is the use of an Inverse Fast Fourier Transform (FFT) to transform the frequency spectrum to an equivalent time series suitable for cycle counting. In addition to analyzing the fatigue loads along the primary blade axes, this analysis technique also permits the examination of “off-axis” bending loads. These algorithms, which have been incorporated in the LIFE2 fatigue analysis code for wind turbines, are illustrated and evaluated with data from typical wind turbine blades.


Sign in / Sign up

Export Citation Format

Share Document