Investigations of the Isotropic G Factors for the Cubic Fe+ Centers in LiF and NaF

2013 ◽  
Vol 634-638 ◽  
pp. 91-94
Author(s):  
Xian Fen Hu ◽  
Shao Yi Wu ◽  
Min Quan Kuang ◽  
Bo Tao Song

The g factors for the cubic Fe+centers in LiF and NaF are theoretically investigated from the perturbation formula of the g factor for an octahedral 3d7cluster including the contributions from the ligand orbital and spin-orbit coupling interactions. The increasing order of the g factor (i.e., LiF < NaF) can be ascribed to the decrease in covalency and the strength of cubic crystal-field of the systems. The validity of the results is discussed.

2015 ◽  
Vol 29 (25n26) ◽  
pp. 1542017
Author(s):  
L. J. Zhang ◽  
S. Y. Wu ◽  
C. C. Ding ◽  
Y. K. Cheng

The anisotropic [Formula: see text] factors of the deoxygenated YBaCuO (Y123) are theoretically studied using the perturbation formulas of the [Formula: see text] factors for a tetragonally elongated octahedral [Formula: see text] cluster. The ligand orbital and spin-orbit coupling contributions are included from the cluster approach in view of covalency. The calculated [Formula: see text] factors show good agreement with the experimental data. The anisotropy of the [Formula: see text] factors is analyzed by considering the local tetragonal elongation distortion around this five-fold coordinated [Formula: see text] site in the deoxygenated Y123 system.


2005 ◽  
Vol 60 (5) ◽  
pp. 366-368 ◽  
Author(s):  
Shao-Yi Wu ◽  
Hui-Ning Dong

The g factors of Fe+ in MgO and CaO are theoretically investigated by the perturbation formula of the g factor of a 3d7 ion in cubic octahedral symmetry based on the cluster approach. By considering the partial quenching of the spin-orbit coupling interaction and the effective Land´e factor due to the dynamic Jahn-Teller effect (DJTE), the experimental g factors of the studied systems are reasonably interpreted. It can be suggested that the small g factors of the Fe+ centers in MgO and CaO can be likely attributed to the DJTE, rather than the covalency effect within the scheme of the static crystalfield model.


1977 ◽  
Vol 55 (10) ◽  
pp. 937-942 ◽  
Author(s):  
A. F. Leung ◽  
Ying-Ming Poon

The absorption spectra of UCl5 single crystal were observed in the region between 0.6 and 2.4 μm at room, 77, and 4.2 K temperatures. Five pure electronic transitions were assigned at 11 665, 9772, 8950, 6643, and 4300 cm−1. The energy levels associated with these transitions were identified as the splittings of the 5f1 ground configuration under the influence of the spin–orbit coupling and a crystal field of C2v symmetry. The number of crystal field parameters was reduced by assuming the point-charge model where the positions of the ions were determined by X-ray crystallography. Then, the crystal field parameters and the spin–orbit coupling constant were calculated to be [Formula: see text],[Formula: see text], [Formula: see text], and ξ = 1760 cm−1. The vibronic analysis showed that the 90, 200, and 320 cm−1 modes were similar to the T2u(v6), T1u(v4), and T1u(v3) of an UCl6− octahedron, respectively.


2018 ◽  
Vol 112 (7) ◽  
pp. 071903 ◽  
Author(s):  
Nicolas Chauvin ◽  
Amaury Mavel ◽  
Ali Jaffal ◽  
Gilles Patriarche ◽  
Michel Gendry

It is shown in the first part how the basic formalism of the theory of spin-orbit coupling in the band theory of crystals can be deduced at once from the Dirac equation without the usual ambiguities over improper rotations associated with the formalism based on the Pauli-Schrödinger equation. In the second part it is shown that the original proofs of the time-reversal theorems given by Wigner are unnecessarily complicated.


2009 ◽  
Vol 64 (12) ◽  
pp. 834-836
Author(s):  
Chao Ni ◽  
Yi Huang ◽  
Maolu Du

Introducing the average covalent factor N and considering the interaction of the cubic crystal field, the spin-orbit coupling and Tree’s correction effects, the crystal field parameter Dq was calculated. Also the varying tendency of Dq with the bond length R was investigated. Using the complete diagonalizing method the energy levels of the fine structure of Ga2Se3:Co2+ single crystal were calculated and assigned. The calculated and assigned results are consistent with the experimental data


The theory of magnetic anisotropy and susceptibility of Fe 2+ in Tutton salts has been worked out on the basis of Abragam & Pryce’s method. It is found that the anisotropic part of the crystal field changes with temperature owing to the thermal expansion of the crystal lattice. The spin-orbit coupling coefficient has to be decreased by ~ 20 % from its free ion value of - 103 cm -1 which indicates some amount of overlap between the 3 d -Fe 2+ and 8 - and p -O 2- charge clouds. The agreement of the theoretical values with the experiment is good within the limitations of the approximations involved.


Sign in / Sign up

Export Citation Format

Share Document