Line-of-Sight Angle Rate Reconstruction for Phased Array Strapdown Seeker

2013 ◽  
Vol 645 ◽  
pp. 196-201
Author(s):  
Ying Liu ◽  
Wei Feng Tian ◽  
Jian Kang Zhao ◽  
Shi Qing Zhu ◽  
Ge Wen Yang

The phased array strapdown radar seeker’s detecting information is coupled with missile attitude information. Hence, the measurement information can not be used for proportional navigation directly. The method of reconstructing inertial line of sight (LOS) rate in phased array strapdown seeker is presented using the missile-target relative motion geometric and filtering algorithm. Considering measurement noise and nonlinearity of the phased array strapdown radar guidance systems, the principle of unscented kalman filter (UKF) is introduced to estimate LOS rate. The simulation results show that the reconstruction method is correct and the extraction of LOS rate is effective.

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Jue Huang ◽  
Bing Yan ◽  
Shouwei Hu

We propose a robust method for tracking nonlinear target with the fusion unscented Kalman filter (FUKF). We noticed that when some outliers exist in the measurements of the sensors, they cannot track the target accurately by using the standard Kalman filters. The robust statistics theory is used in this paper to solve this problem. The measurement noise variance which is at the time of the outlier is restructured through minimizing the designed cost function. Then, the standard fusion unscented Kalman filter is used to track the target in order to avoid the bias brought by the linear approximation. Compared to the traditional tracking method and Huber robust method (HFUKF), this method has a more accurate performance and can track the target efficiently while the outliers exist. Last, simulation examples in three different conditions are given and the simulation results show the advantages of the proposed method over the fusion unscented Kalman filter (FUKF) and the Huber robust method (HFUKF).


2014 ◽  
Vol 615 ◽  
pp. 244-247
Author(s):  
Dong Wang ◽  
Guo Yu Lin ◽  
Wei Gong Zhang

The wheel force transducer (WFT) is used to measure dynamic wheel loads. Unlike other force sensors, WFT is rotating with the wheel. For this reason, the outputs and the inputs of the transducer are nonlinearly related, and traditional Kalman Filter is not suitable. In this paper, a new real-time filter algorithm utilizing Quadrature Kalman Filter (QKF) is proposed to solve this problem. In Quadrature Kalman Filter, Singer model is introduced to track the wheel force, and the observation function is established for WFT. The simulation results illustrate that the new filter outperforms the traditional Unscented Kalman Filter (UKF) and Extended Kalman Filter (EKF).


2018 ◽  
Vol 214 ◽  
pp. 03008 ◽  
Author(s):  
YongShan Liu ◽  
Li Song ◽  
JingLong Li

Strapdown seekers are superior to platform seekers for their simple structure, high reliability and light weight but cannot measure the line-of-sight angle rate information for the guidance of rotation missile directly. This paper aims at the engineering application of full-strapdown seekers on rotation missile problem. Firstly, a line-of-sight angle rate solution model is established. Based on the MATLAB, the extended Kalman filter (EKF) algorithm and unscented Kalman filter (UKF) algorithm are used to estimate the line-of-sight angle rate information of the full-strapdown seekers. The results show that using EKF filter and UKF filter both can obtain effective guidance information and the UKF’s effect is better.


Author(s):  
N. S. Gopaul ◽  
J. G. Wang ◽  
B. Hu

An image-aided inertial navigation implies that the errors of an inertial navigator are estimated via the Kalman filter using the aiding measurements derived from images. The standard Kalman filter runs under the assumption that the process noise vector and measurement noise vector are white, i.e. independent and normally distributed with zero means. However, this does not hold in the image-aided inertial navigation. In the image-aided inertial integrated navigation, the relative positions from optic-flow egomotion estimation or visual odometry are <i>pairwise</i> correlated in terms of time. It is well-known that the solution of the standard Kalman filter becomes suboptimal if the measurements are colored or time-correlated. Usually, a shaping filter is used to model timecorrelated errors. However, the commonly used shaping filter assume that the measurement noise vector at epoch <i>k</i> is not only correlated with the one from epoch <i>k</i> &ndash; 1 but also with the ones before epoch <i>k</i> &ndash; 1 . The shaping filter presented in this paper uses Cholesky factors under the assumption that the measurement noise vector is pairwise time-correlated i.e. the measurement noise are only correlated with the ones from previous epoch. Simulation results show that the new algorithm performs better than the existing algorithms and is optimal.


2014 ◽  
Vol 687-691 ◽  
pp. 787-790
Author(s):  
Rong Jun Yang ◽  
Yao Ye

. For effectively using flight test data to extract drag coefficient, an optimal observer based on parameter estimation technique is proposed. The point mass dynamic equation is used to form the Unscented Kalman Filter (UKF) and the smoother (URTSS) for the estimation of a projectile’s flight states. The projectile flight states are then solved and utilized to extract the drag coefficient information using the observer techniques. The simulation verifies the feasibility of the method: with measurement noise, the accurate drag coefficient is obtained by using the smoother.


2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Wenxian Duan ◽  
Chuanxue Song ◽  
Yuan Chen ◽  
Feng Xiao ◽  
Silun Peng ◽  
...  

An accurate state of charge (SOC) can provide effective judgment for the BMS, which is conducive for prolonging battery life and protecting the working state of the entire battery pack. In this study, the first-order RC battery model is used as the research object and two parameter identification methods based on the least square method (RLS) are analyzed and discussed in detail. The simulation results show that the model parameters identified under the Federal Urban Driving Schedule (HPPC) condition are not suitable for the Federal Urban Driving Schedule (FUDS) condition. The parameters of the model are not universal through the HPPC condition. A multitimescale prediction model is also proposed to estimate the SOC of the battery. That is, the extended Kalman filter (EKF) is adopted to update the model parameters and the adaptive unscented Kalman filter (AUKF) is used to predict the battery SOC. The experimental results at different temperatures show that the EKF-AUKF method is superior to other methods. The algorithm is simulated and verified under different initial SOC errors. In the whole FUDS operating condition, the RSME of the SOC is within 1%, and that of the voltage is within 0.01 V. It indicates that the proposed algorithm can obtain accurate estimation results and has strong robustness. Moreover, the simulation results after adding noise errors to the current and voltage values reveal that the algorithm can eliminate the sensor accuracy effect to a certain extent.


Author(s):  
Akram Nikfetrat ◽  
Reza Mahboobi Esfanjani

A self-tuning Kalman filter is introduced to reduce the destructive effects of the delayed and lost measurements in the guidance systems employing command to line-of-sight strategy. A sequence of Bernoulli distributed random variables with uncertain probabilities are used to model the delayed and lost observations. Besides the state estimation, the uncertain parameters of the measurement model are identified online using the covariance of innovation sequence. Simulation results are given to demonstrate the merits of the suggested approach.


2012 ◽  
Vol 466-467 ◽  
pp. 1329-1333
Author(s):  
Jing Mu ◽  
Chang Yuan Wang

We present the new filters named iterated cubature Kalman filter (ICKF). The ICKF is implemented easily and involves the iterate process for fully exploiting the latest measurement in the measurement update so as to achieve the high accuracy of state estimation We apply the ICKF to state estimation for maneuver reentry vehicle. Simulation results indicate ICKF outperforms over the unscented Kalman filter and square root cubature Kalman filter in state estimation accuracy.


2020 ◽  
Vol 10 (15) ◽  
pp. 5045 ◽  
Author(s):  
Ming Lin ◽  
Byeongwoo Kim

The location of the vehicle is a basic parameter for self-driving cars. The key problem of localization is the noise of the sensors. In previous research, we proposed a particle-aided unscented Kalman filter (PAUKF) to handle the localization problem in non-Gaussian noise environments. However, the previous basic PAUKF only considers the infrastructures in two dimensions (2D). This previous PAUKF 2D limitation rendered it inoperable in the real world, which is full of three-dimensional (3D) features. In this paper, we have extended the previous basic PAUKF’s particle weighting process based on the multivariable normal distribution for handling 3D features. The extended PAUKF also raises the feasibility of fusing multisource perception data into the PAUKF framework. The simulation results show that the extended PAUKF has better real-world applicability than the previous basic PAUKF.


Sign in / Sign up

Export Citation Format

Share Document