In Situ Fatigue Crack Initiation Monitoring in NiTi Rotary Endodontic Instruments

2013 ◽  
Vol 647 ◽  
pp. 3-8
Author(s):  
C.S. Shin ◽  
C.Y. Liu ◽  
S.C. Hsu

During clinical operation in root canals, NiTi endodontic rotary instruments are subjected to alternating tension and compression and are prone to accidental fracture without prior warning. Once broken, extracting the fractured part from the canal is difficult and is annoying to both the patient and the dentist. Warning of an imminent fracture during clinical use will be a great help to avoid medical and legal complications. To this end, a monitoring technique that involves the picking up and analysis of the stress wave signals due to the cutting and rubbing at the canal wall-instrument blade interface was investigated. Both the stress wave conducted through solid and the sound wave conducted in air were monitored. The former was picked up by a Fiber Bragg Grating (FBG) and the latter with a microphone. When cracking developed in a rotary instrument, we expect the natural vibration frequency of the instrument as well as the characteristics of cutting/rubbing with the canal wall change. From the raw signal intensity history, it is possible to differentiate whether the instrument is operating but there is no clue when a fatigue crack has initiated. By employing Fast Fourier Transform (FFT) on the signal, we can reveal the energy associated with different frequencies. With characteristic frequency we refer to the frequency that is associated with the highest signal intensity. It was found that the energy intensity of the characteristic frequency varied in a well-defined pattern during the process of fatigue testing of the rotary instrument. Towards the end of fatigue life, a large intensity spike of the characteristic frequency was observed and this was shown to be associated with the occurrence of a fatigue crack. It is hoped that with this information, the fatigue failure of rotary instruments can be closely monitored to avoid/alleviate the occurrence of unexpected fracture during clinical use.

2016 ◽  
Vol 15 (5) ◽  
pp. 981-988 ◽  
Author(s):  
Ramona Amina Popovici ◽  
Teodora Stefanescu ◽  
Iulian Vasile Antoniac ◽  
Atena Galuscan ◽  
Tiberiu Tirca

2017 ◽  
Vol 86 (1) ◽  
pp. 56-58
Author(s):  
Seiichiro TSUTSUMI ◽  
Fincato RICCARDO ◽  
Mitsuru OHATA ◽  
Tomokazu SANO

2021 ◽  
Vol 11 (10) ◽  
pp. 4435
Author(s):  
Ho-Quang NGUYEN ◽  
Trieu-Nhat-Thanh NGUYEN ◽  
Thinh-Quy-Duc PHAM ◽  
Van-Dung NGUYEN ◽  
Xuan Van TRAN ◽  
...  

Understanding of fracture mechanics of the human knee structures within total knee replacement (TKR) allows a better decision support for bone fracture prevention. Numerous studies addressed these complex injuries involving the femur bones but the full macro-crack propagation from crack initiation to final failure and age-related effects on the tibia bone were not extensively studied. The present study aimed to develop a patient-specific model of the human tibia bone and the associated TKR implant, to study fatigue and fracture behaviors under physiological and pathological (i.e., age-related effect) conditions. Computed tomography (CT) data were used to develop a patient-specific computational model of the human tibia bone (cortical and cancellous) and associated implants. First, segmentation and 3D-reconstruction of the geometrical models of the tibia and implant were performed. Then, meshes were generated. The locations of crack initiation were identified using the clinical observation and the fatigue crack initiation model. Then, the propagation of the crack in the bone until final failure was investigated using the eXtended finite element method (X-FEM). Finally, the obtained outcomes were analyzed and evaluated to investigate the age-effects on the crack propagation behaviors of the bone. For fatigue crack initiation analysis, the stress amplitude–life S–N curve witnessed a decrease with increasing age. The maximal stress concentration caused by cyclic loading resulted in the weakening of the tibia bone under TKR. For fatigue crack propagation analysis, regarding simulation with the implant, the stress intensity factorand the energy release rate tended to decrease, as compared to the tibia model without the implant, from 0.152.5 to 0.111.9 (MPa) and from 10240 to 5133 (J), respectively. This led to the drop in crack propagation speed. This study provided, for the first time, a detailed view on the full crack path from crack initiation to final failure of the tibia bone within the TKR implant. The obtained outcomes also suggested that age (i.e., bone strength) also plays an important role in tibia crack and bone fracture. In perspective, patient-specific bone properties and dynamic loadings (e.g., during walking or running) are incorporated to provide objective and quantitative indicators for crack and fracture prevention, during daily activities.


2021 ◽  
Vol 180 ◽  
pp. 106571
Author(s):  
Xiaowei Liao ◽  
Yuanqing Wang ◽  
Liuyang Feng ◽  
Huiyong Ban ◽  
Yong Chen

Author(s):  
Zepeng Liu ◽  
Hongxia Zhang ◽  
Zhenguo Hou ◽  
Zhifeng Yan ◽  
Peter K. Liaw ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document