Vibro-Acoustics Characteristics of Non-Uniform Ring Stiffened Cylindrical Shells Using Wave Propagation Approach

2013 ◽  
Vol 655-657 ◽  
pp. 562-567 ◽  
Author(s):  
Bing Ru Li ◽  
Yue Peng Jiang ◽  
Xuan Yin Wang ◽  
Hui Liang Ge

Based on Donnell’s thin shell theory and basic equations, the wave propagation method is discussed here in detail, which is used to investigate the vibration and sound radiation characteristics of non-uniform ring stiffened cylindrical shells under various boundary conditions. The structure damp effects of cylindrical shells are investigated and the ring ribs were considered very narrow, and the rib forces are considered in radial direction. The conclusion are drawn that with the structural loss factor changing large, the whole pressure level are changed little, but the peak of resonance are slacking down obviously; The shell’s resonance frequency can be changed with irregular ring stiffened cylindrical shell .The work will give some guidelines for noise reduction of this kind of shell.

2013 ◽  
Vol 662 ◽  
pp. 721-725
Author(s):  
Qi Zheng Zhou ◽  
De Shi Wang ◽  
Sheng Yao Gao

A research on the vibration and acoustic radiation of stiffened finite cylindrical shells in water under a multiple axial-excitations driven was presented. The vibro-acoustic coupling equations of shell under multiple axial-excitations based on Flügge thin shell theory were established. The displacements, surface acoustic pressure and stiffener impedances were expressed in terms of the numbers of normal modals and modes, and considering multiple excitations, the forces were expressed in terms of the numbers of normal modals and modes. Then analytical solution was derived for the vibration and sound radiation from the stiffened shell under multiple excitations. Based on the analytical solution, the influences of excitations’ positions to the vibration and acoustic radiation were investigated. The results show that for double excitations, at high frequencies, the distance between excitations was more large, the average velocity was more low. The results could be used to control the underwater vehicle’s vibration and acoustic radiation.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
G. H. Rahimi ◽  
M. Hemmatnezhad ◽  
R. Ansari

A unified analytical approach is applied to investigate the vibrational behavior of grid-stiffened cylindrical shells with different boundary conditions. A smeared method is employed to superimpose the stiffness contribution of the stiffeners with those of shell in order to obtain the equivalent stiffness parameters of the whole panel. Theoretical formulation is established based on Sanders’ thin shell theory. The modal forms are assumed to have the axial dependency in the form of Fourier series whose derivatives are legitimized using Stoke's transformation. A 3D finite element model is also built using ABAQUS software which takes into consideration the exact geometric configuration of the stiffeners and the shell. The achievements from the two types of analyses are compared with each other and good agreement has been obtained. The Influences of variations in shell geometrical parameters, boundary condition, and changes in the cross stiffeners angle on the natural frequencies are studied. The results obtained are novel and can be used as a benchmark for further studies. The simplicity and the capability of the present method are also discussed.


Author(s):  
Ching-Yu Hsu ◽  
Chan-Yung Jen

The thin-walled stiffened cylindrical shells are usually applied in a submarine which takes the external pressure load, or in a boiler, pressure vessel or pipeline system which takes the internal pressure load. The thin-walled stiffened cylindrical shells under hydrodynamic loading are very sensitive to geometrical imperfections. This study is investigating an imperfect thin-walled stiffened cylindrical shell (out-of-round ratio is ψ = 2%) at a depth of 50m below the water level to see how it withstands sideward TNT 782 kg underwater explosion loading so as to understand its structural transient response. ABAQUS finite element software is used as an analysis tool in the current study, meanwhile, during the analysis process, the Fluid-Structure Interaction (FSI) condition is employed. The structural transient response results of stress and displacement time history of the imperfect thin-walled stiffened cylindrical shell can be used as a reference for the anti-underwater explosion analysis and design of future submersible vehicles, pressure hulls or related structural designs.


2014 ◽  
Vol 580-583 ◽  
pp. 2879-2882
Author(s):  
Xiao Wan Liu ◽  
Bin Liang

Effect of ring support position and geometrical dimension on the free vibration of ring-stiffened cylindrical shells is studied in this paper. The study is carried out by using Sanders shell theory. Based on the Rayleigh-Ritz method, the shell eigenvalue governing equation is derived. The present analysis is validated by comparing results with those in the literature. The vibration characteristics are obtained investigating two different boundary conditions with simply supported-simply supported and clamped-free as the examples. Key Words: Ring-stiffened cylindrical shell; Free vibration; Rayleigh-Ritz method.


2007 ◽  
Vol 14 (5) ◽  
pp. 377-391 ◽  
Author(s):  
S. Asiri

This paper presents both theoretically and experimentally a new kind of vibration isolator called tunable mechanical filter which consists of four parallel hybrid periodic rods connected between two plates. The rods consist of an assembly of periodic cells, each cell being composed of a short rod and piezoelectric inserts. By actively controlling the piezoelectric elements, it is shown that the periodic rods can efficiently attenuate the propagation of vibration from the upper plate to the lower one within critical frequency bands and consequently minimize the effects of transmission of undesirable vibration and sound radiation. In such a filter, longitudinal waves can propagate from the vibration source in the upper plate to the lower one along the rods only within specific frequency bands called the “Pass Bands” and wave propagation is efficiently attenuated within other frequency bands called the “Stop Bands”. The spectral width of these bands can be tuned according to the nature of the external excitation. The theory governing the operation of this class of vibration isolator is presented and their tunable filtering characteristics are demonstrated experimentally as functions of their design parameters. The concept of this mechanical filter as presented can be employed in many applications to control the wave propagation and the force transmission of longitudinal vibrations both in the spectral and spatial domains in an attempt to stop/attenuate the propagation of undesirable disturbances.


Sign in / Sign up

Export Citation Format

Share Document