Energy Efficient Multi-Hop Wireless Sensor Networks with Cooperative MIMO Scheme

2013 ◽  
Vol 660 ◽  
pp. 124-129
Author(s):  
Yu Yang Peng ◽  
Jaeho Choi ◽  
Zi Chen Ren ◽  
Jae Ho Choi

For wireless sensor networks, energy efficiency is one of the most important subjects in recent research. In this paper, an energy-efficient multi-hop scheme based on cooperative MIMO (multiple-input multiple-output) technique is proposed for wireless sensor networks. Different from other papers, we consider a single cluster transmission scenario in which energy consumption is optimized by selecting the hop length and modulation constellation size. The optimal energy consumption formula is derived and proved mathematically. In addition, the minimum energy consumption per bit is calculated numerically.

Author(s):  
BO TANG ◽  
YANDONG WANG ◽  
MINGTIAN ZHOU

Wireless Sensor Networks (WSNs) with limited energy resource demand the implementation of energy-efficient techniques in applications. Recently, the scheme based on cooperative MIMO (Multiple-Input-Multiple-Output) has been proposed to enhance energy saving in WSNs. In this paper, we analyze the performance of energy consumption of inter-cluster communication based on cooperative MIMO techniques in cluster-based WSNs, and then propose a novel method to optimize the energy consumption analysis by changing the network topology into an equivalent double-string topology which can be easily solved by using optimization programming problem in SISO (Single-Input-Single-Output) system model, where cooperating nodes within each MIMO scheme transmission steps are treated as a virtual node. The simulation results show that our proposed data transmission with cooperative MIMO scheme outperforms the protocol without MIMO techniques significantly in terms of energy, lifetime and delay in multi-hop WSNs.


2013 ◽  
Vol 4 (2) ◽  
pp. 267-272
Author(s):  
Dr. Deepali Virmani

Optimizing and enhancing network lifetime with minimum energy consumption is the major challenge in field of wireless sensor networks. Existing techniques for optimizing network lifetime are based on exploiting node redundancy, adaptive radio transmission power and topology control. Topology control protocols have a significant impact on network lifetime, available energy and connectivity. In this paper we categorize sensor nodes as strong and weak nodes based on their residual energy as well as operational lifetime and propose a Maximizing Network lifetime Operator (MLTO) that defines cluster based topology control mechanism to enhance network lifetime while guarantying the minimum energy consumption and minimum delay. Extensive simulations in Java-Simulator (J-Sim) show that our proposed operator outperforms the existing protocols in terms of various performance metrics life network lifetime, average delay and minimizes energy utilization.


2017 ◽  
Vol 13 (7) ◽  
pp. 155014771771718 ◽  
Author(s):  
Arshad Sher ◽  
Nadeem Javaid ◽  
Irfan Azam ◽  
Hira Ahmad ◽  
Wadood Abdul ◽  
...  

In this article, to monitor the fields with square and circular geometries, three energy-efficient routing protocols are proposed for underwater wireless sensor networks. First one is sparsity-aware energy-efficient clustering, second one is circular sparsity-aware energy-efficient clustering, and the third one is circular depth–based sparsity-aware energy-efficient clustering routing protocol. All three protocols are proposed to minimize the energy consumption of sparse regions, whereas sparsity search algorithm is proposed to find sparse regions and density search algorithm is used to find dense regions of the network field. Moreover, clustering is performed in dense regions to minimize redundant transmissions of a data packet, while sink mobility is exploited to collect data from sensor nodes with an objective of minimum energy consumption. A depth threshold [Formula: see text] value is also used to minimize number of hops between source and destination for less energy consumption. Simulation results show that our schemes perform better than their counter-part schemes (depth-based routing and energy-efficient depth-based routing) in terms of energy efficiency.


Sign in / Sign up

Export Citation Format

Share Document