Theory of Nano-Carbon Based Materials: Cyclotron Resonance, Kohn's Theorem and Hubbard Model

2013 ◽  
Vol 667 ◽  
pp. 516-524
Author(s):  
Keshav N. Shrivastava

A monolayer of carbon is called graphene. It exhibits unusual properties in the Hall effect and in the cyclotron resonance. It is found that it exhibits fractional charge in the Hall effect. The interactions amongst electrons almost become constant at low temperatures. Hence, the Kohn's theorem, which shows that the interactions do not play much role in determining the cyclotron resonance, becomes operative at low temperatures. The experiments on graphene do not depend on the wave vector dependence of the frequency. Hence whether the dispersion depends on k2 or on k does not matter. The Hubbard model has been very successful in explaining the ground state of several electron systems. We consider a triangle with three vortices. Each vortex can be occupied by two electrons. By using the spin in a particular way, we can obtain new features in the Hubbard model. There is a doubling in the Peierls-Luttinger phase factor and eigen values acquire higher multiplicities than are known for the usual treatment of spin. The flux is distributed on the area of the triangle. The graphene consists of hexagons of carbon atoms but the Hall effect shows that there are defects on which electrons form clusters so that there is spin wave type behaviour. A cluster of electrons shows spin-waves leading to "spin deviation" of several per cent.

2002 ◽  
Vol 16 (20n22) ◽  
pp. 3171-3174
Author(s):  
F. F. BALAKIREV ◽  
J. B. BETTS ◽  
G. S. BOEBINGER ◽  
S. ONO ◽  
Y. ANDO ◽  
...  

We report low-temperature Hall coefficient in the normal state of the high-Tc superconductor Bi 2 Sr 2-x La x CuO 6+δ. The Hall coefficient was measured down to 0.5 K by suppressing superconductivity with a 60 T pulsed magnetic field. The carrier concentration was varied from overdoped to underdoped regimes by partially substituting Sr with La in a set of five samples. The observed saturation of the Hall coefficient at low temperatures suggests the ability to extract the carrier concentration of each sample. The most underdoped sample exhibits a diverging Hall coefficient at low temperatures, consistent with a depletion of carriers in the insulating ground state. The Hall number exhibits a sharp peak providing additional support for the existence of a phase boundary at the optimal doping.


1983 ◽  
Vol 27 (2) ◽  
pp. 1386-1389 ◽  
Author(s):  
Serge Luryi ◽  
Rudolf F. Kazarinov
Keyword(s):  

2007 ◽  
Vol 460-462 ◽  
pp. 248-251
Author(s):  
Werner Hanke ◽  
Markus Aichhorn ◽  
Enrico Arrigoni ◽  
Michael Potthoff

1997 ◽  
Vol 11 (11) ◽  
pp. 1311-1335 ◽  
Author(s):  
Kristel Michielsen ◽  
Hans De Raedt

We present stochastic diagonalization results for the ground-state energy and the largest eigenvalue of the two-fermion density matrix of the BCS reduced Hamiltonian, the Hubbard model, and the Hubbard model with correlated hopping. The system-size dependence of this eigenvalue is used to study the existence of Off-Diagonal Long-Range Order in these models. We show that the model with correlated hopping and repulsive on-site interaction can exhibit Off-Diagonal Long-Range Order. Analytical results for some special limiting cases indicate that Off-Diagonal Long-Range Order not always implies superconductivity.


Sign in / Sign up

Export Citation Format

Share Document