Numerical Simulation Analysis on Repairing Hole of UAV Wing

2013 ◽  
Vol 690-693 ◽  
pp. 2891-2895
Author(s):  
Guo Dong Jin ◽  
Li Bin Lu ◽  
Liang Xian Gu ◽  
Juan Liang

Parachute recovery of UAV is often caused of holes and other injuries on wings, that are required repair and maintenance. The surface of the patch will form the high stress area, that affects UAV using life and safety .But repair method is good or bad directly affects size of the high stress area. Based on finite element method, the broken hole repairing method was formulated and validated by ANSYS. The method could minimize the high stress area as far as possible, and economically repair broken hole of wing in certain precision and safety standards condition. It has a certain reference value for UAV repair and management, and has reference significance for extending the service life of the UAV. Key words: Finite element method; Unmanned Aerial Vehicle (UAV); Simulation; Hole of wings

2011 ◽  
Vol 474-476 ◽  
pp. 251-254
Author(s):  
Jian Jun Wu ◽  
Wei Liu ◽  
Yu Jing Zhao

The multi-step forward finite element method is presented for the numerical simulation of multi-step sheet metal forming. The traditional constitutive relationship is modified according to the multi-step forming processes, and double spreading plane based mapping method is used to obtain the initial solutions of the intermediate configurations. To verify the multi-step forward FEM, the two-step simulation of a stepped box deep-drawing part is carried out as it is in the experiment. The comparison with the results of the incremental FEM and test shows that the multi-step forward FEM is efficient for the numerical simulation of multi-step sheet metal forming processes.


Sign in / Sign up

Export Citation Format

Share Document