Multiscale Parameter Identification Method for Three Dimension Steady Heat Transfer Model of Composite Materials

2013 ◽  
Vol 706-708 ◽  
pp. 152-157
Author(s):  
Tang Wei Liu ◽  
He Hua Xu ◽  
Xue Lin Qiu ◽  
Xiao Bin Shi

In this paper, for heat conductivity identification of three dimension steady heat transfer model of composite materials, a new hybrid Tikhonov regularization mixed multiscale finite-element method is present. First the mathematical models of the forward and the coefficient inverse problems are discussed. Then the forward model is solved by mixed multiscale FEM which utilizes the effects of fine-scale heterogeneities through basis functions formulation computed from local heat transfer problems. At last the numerical approximation of inverse coefficient problem is obtained by Tikhonov regularization method.

2000 ◽  
Author(s):  
M. Kumagai ◽  
R. S. Amano ◽  
M. K. Jensen

Abstract A numerical and experimental investigation on cooling of a solid surface was performed by studying the behavior of an impinging jet onto a fixed flat target. The local heat transfer coefficient distributions on a plate with a constant heat flux were computationally investigated with a normally impinging axisymmetric jet for nozzle diameter of 4.6mm at H/d = 4 and 10, with the Reynolds numbers of 10,000 and 40,000. The two-dimensional cylindrical Navier-Stokes equations were solved using a two-equation k-ε turbulence model. The finite-volume differencing scheme was used to solve the thermal and flow fields. The predicted heat transfer coefficients were compared with experimental measurements. A universal function based on the wave equation was developed and applied to the heat transfer model to improve calculated local heat transfer coefficients for short nozzle-to-plate distance (H/d = 4). The differences between H/d = 4 and 10 due to the correlation among heat transfer coefficient, kinetic energy and pressure were investigated for the impingement region. Predictions by the present model show good agreement with the experimental data.


1999 ◽  
Vol 122 (2) ◽  
pp. 366-374 ◽  
Author(s):  
Tao Guo ◽  
Ting Wang ◽  
J. Leo Gaddis

Experimental studies on mist/steam cooling in a heated horizontal tube have been performed. Wall temperature distributions have been measured under various main steam flow rates, droplet mass ratios, and wall heat fluxes. Generally, the heat transfer performance of steam can be significantly improved by adding mist into the main flow. An average enhancement of 100 percent with the highest local heat transfer enhancement of 200 percent is achieved with 5 percent mist. When the test section is mildly heated, an interesting wall temperature distribution is observed: The wall temperature increases first, then decreases, and finally increases again. A three-stage heat transfer model with transition boiling, unstable liquid fragment evaporation, and dry-wall mist cooling has been proposed and has shown some success in predicting the wall temperature of the mist/steam flow. The PDPA measurements have facilitated better understanding and interpreting of the droplet dynamics and heat transfer mechanisms. Furthermore, this study has shed light on how to generate appropriate droplet sizes to achieve effective droplet transportation, and has shown that it is promising to extend present results to a higher temperature and higher pressure environment. [S0889-504X(00)02502-2]


2014 ◽  
Vol 538 ◽  
pp. 175-178
Author(s):  
Xiao Ri Liu ◽  
Guo Xiang Li ◽  
Yu Ping Hu ◽  
Shu Zhan Bai ◽  
Kang Yao Deng

Based on the Woschni correlation, a three dimensional in-cylinder heat transfer model is proposed, which develops Woschni correlation from zero dimension to three dimension. Characteristic parameters are proposed as transient flow and heat transfer parameters from in-cylinder CFD simulation, with further consideration of the influence of thermal conductivity, viscosity and Prandtl number. According to test data, the new correlation can be regressed. The new model costs little more calculation time, and it can satisfy the engineering demand.


2019 ◽  
Vol 21 (9) ◽  
pp. 1750-1763 ◽  
Author(s):  
Tim Franken ◽  
Christian Klauer ◽  
Martin Kienberg ◽  
Andrea Matrisciano ◽  
Fabian Mauss

The prediction of local heat transfer and thermal stratification in the zero-dimensional stochastic reactor model is compared to direct numerical simulation published by Schmitt et al. in 2015. Direct numerical simulation solves the Navier–Stokes equations without incorporating model assumptions for turbulence and wall heat transfer. Therefore, it can be considered as numerical experiment and is suitable to validate approximations in low-dimensional models. The stochastic reactor model incorporates a modified version of the Euclidean Minimum Spanning Tree mixing model proposed by Subramaniam et al. in 1998. To capture the thermal stratification of the direct numerical simulation, the total enthalpy ( H) is used as the only mixing limiting scalar within the newly proposed H-Euclidean-Minimum-Spanning-Tree. Furthermore, a stochastic heat transfer model is incorporated to mimic turbulence effects on local heat transfer distribution to the walls. By adjusting the Cϕ mixing time and Ch stochastic heat transfer parameter, the stochastic reactor model predicts accurately the thermal stratification of the direct numerical simulation. Comparing the Woschni, Hohenberg and Heinle heat transfer model shows that the modified Heinle model matches accurately the direct numerical simulation results. Thereby, the Heinle model accounts for the influence of turbulent kinetic energy on the characteristic velocity in the heat transfer coefficient calculation. This highlights the importance of incorporating turbulence effects in low-dimensional heat transfer models. Overall, the zero-dimensional stochastic reactor model with the H-Euclidean-Minimum-Spanning-Tree mixing model, the stochastic heat transfer model and the modified Heinle correlation have proven successfully the prediction of mean quantities like temperature and heat transfer and thermal stratification of the direct numerical simulation.


Author(s):  
T. Guo ◽  
T. Wang ◽  
J. L. Gaddis

Experimental studies on mist/steam cooling in a heated horizontal tube have been performed. Wall temperature distributions have been measured under various main steam flow rates, droplet mass ratios, and wall heat fluxes. Generally, the heat transfer performance of steam can be significantly improved by adding mist into the main flow. An average enhancement of 100% with the highest local heat transfer enhancement of 200% is achieved with 5% mist. When the test section is mildly heated, an interesting wall temperature distribution is observed: the wall temperature increases first, then decreases, and finally increases again. A three-stage heat transfer model with transition boiling, unstable liquid fragment evaporation, and dry-wall mist cooling, has been proposed and has shown some success in predicting the wall temperature of the mist/steam flow. The PDPA measurements have facilitated better understanding and interpreting of the droplet dynamics and heat transfer mechanisms. Furthermore, this study has shed light on how to generate appropriate droplet sizes to achieve effective droplet transportation, and has shown that it is promising to extend present results to a higher temperature and higher pressure environment.


Sign in / Sign up

Export Citation Format

Share Document