Application of Adaptive Fuzzy Filter in Ultrasonic Test System

2013 ◽  
Vol 712-715 ◽  
pp. 1970-1973
Author(s):  
Bei Tao Guo

In order to avoid some shortcomings such as poor accuracy and low signal-to-noise ration, an ultrasonic test system based on automatic and intelligent testing are introduced. After ultrasonic signal is transmitted and received; data processing, data saving and curve displaying are performed in this test system. To solve the problem of extracting the weak ultrasonic signals from the strong noise, an adaptive filter based on least-mean-square (LMS) algorithm is designed. The convergence factor of the algorithm is chose according adaptive fuzzy control rule. Experimental results show that the filter can inhibit the noise and extract the weak signals more effectively. It also can improve the robustness, convergence speed and detecting accuracy.

2020 ◽  
Vol 51 ◽  
pp. 30-38 ◽  
Author(s):  
Naeimeh Fakhr Shamloo ◽  
Ali Akbarzadeh Kalat ◽  
Luigi Chisci

2021 ◽  
Vol 11 (12) ◽  
pp. 5723
Author(s):  
Chundong Xu ◽  
Qinglin Li ◽  
Dongwen Ying

In this paper, we develop a modified adaptive combination strategy for the distributed estimation problem over diffusion networks. We still consider the online adaptive combiners estimation problem from the perspective of minimum variance unbiased estimation. In contrast with the classic adaptive combination strategy which exploits orthogonal projection technology, we formulate a non-constrained mean-square deviation (MSD) cost function by introducing Lagrange multipliers. Based on the Karush–Kuhn–Tucker (KKT) conditions, we derive the fixed-point iteration scheme of adaptive combiners. Illustrative simulations validate the improved transient and steady-state performance of the diffusion least-mean-square LMS algorithm incorporated with the proposed adaptive combination strategy.


2021 ◽  
Vol 11 (14) ◽  
pp. 6288
Author(s):  
Hang Su ◽  
Chang-Myung Lee

The generalized sidelobe canceller (GSC) method is a common algorithm to enhance audio signals using a microphone array. Distortion of the enhanced audio signal consists of two parts: the residual acoustic noise and the distortion of the desired audio signal, which means that the desired audio signal is damaged. This paper proposes a modified GSC method to reduce both kinds of distortion when the desired audio signal is a non-stationary speech signal. First, the cross-correlation coefficient between the canceling signal and the error signal of the least mean square (LMS) algorithm was added to the adaptive process of the GSC method to reduce the distortion of the enhanced signal while the energy of the desired signal frame was increased suddenly. The sidelobe pattern of beamforming was then presented to estimate the noise signal in the beamforming output signal of the GSC method. The noise component of the beamforming output signal was decreased by subtracting the estimated noise signal to improve the denoising performance of the GSC method. Finally, the GSC-SN-MCC method was proposed by merging the above two methods. The experiment was performed in an anechoic chamber to validate the proposed method in various SNR conditions. Furthermore, the simulated calculation with inaccurate noise directions was conducted based on the experiment data to inspect the robustness of the proposed method to the error of the estimated noise direction. The experiment data and calculation results indicated that the proposed method could reduce the distortion effectively under various SNR conditions and would not cause more distortion if the estimated noise direction is far from the actual noise direction.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 942
Author(s):  
Myada Shadoul ◽  
Hassan Yousef ◽  
Rashid Al Abri ◽  
Amer Al-Hinai

Three-phase inverters are widely used in grid-connected renewable energy systems. This paper presents a new control methodology for grid-connected inverters using an adaptive fuzzy control (AFC) technique. The implementation of the proposed controller does not need prior knowledge of the system mathematical model. The capabilities of the fuzzy system in approximating the nonlinear functions of the grid-connected inverter system are exploited to design the controller. The proposed controller is capable to achieve the control objectives in the presence of both parametric and modelling uncertainties. The control objectives are to regulate the grid power factor and the dc output voltage of the photovoltaic systems. The closed-loop system stability and the updating laws of the controller parameters are determined via Lyapunov analysis. The proposed controller is simulated under different system disturbances, parameters, and modelling uncertainties to validate the effectiveness of the designed controller. For evaluation, the proposed controller is compared with conventional proportional-integral (PI) controller and Takagi–Sugeno–Kang-type probabilistic fuzzy neural network controller (TSKPFNN). The results demonstrated that the proposed AFC showed better performance in terms of response and reduced fluctuations compared to conventional PI controllers and TSKPFNN controllers.


Author(s):  
Shuzhen Diao ◽  
Wei Sun ◽  
Le Wang ◽  
Jing Wu

AbstractThis study considers the tracking control problem of the nonstrict-feedback nonlinear system with unknown backlash-like hysteresis, and a finite-time adaptive fuzzy control scheme is developed to address this problem. More precisely, the fuzzy systems are employed to approximate the unknown nonlinearities, and the design difficulties caused by the nonlower triangular structure are also overcome by using the property of fuzzy systems. Besides, the effect of unknown hysteresis input is compensated by approximating an intermediate variable. With the aid of finite-time stability theory, the proposed control algorithm could guarantee that the tracking error converges to a smaller region. Finally, a simulation example is provided to further verify the above theoretical results.


Sign in / Sign up

Export Citation Format

Share Document