INS/GPS/MNS Integrated Navigation System with Federated Kalman Filtering

2013 ◽  
Vol 718-720 ◽  
pp. 1207-1212
Author(s):  
De Ning Jiang ◽  
Tulu Muluneh Mekonnen

A multi-sensor integrated solution that combine complementary features of the Global Positioning System (GPS), inertial navigation system (INS), and magnetometer is presented due to GPS-aided inertial navigation system (INS) provides poor observability of heading angle. In addition, Based on the principle of federated Kalman filtering and Adaptive Extended Kalman Filter, the algorithm is presented also for accuracy of positioning and attitude, rapidity, and error tolerance of the navigation system. The algorithm is implemented in the integrated navigation system. Experimental results show that the observability issue is solved and improvement in accuracy.

2013 ◽  
Vol 336-338 ◽  
pp. 277-280 ◽  
Author(s):  
Tian Lai Xu

The combination of Inertial Navigation System (INS) and Global Positioning System (GPS) provides superior performance in comparison with either a stand-alone INS or GPS. However, the positioning accuracy of INS/GPS deteriorates with time in the absence of GPS signals. A least squares support vector machines (LS-SVM) regression algorithm is applied to INS/GPS integrated navigation system to bridge the GPS outages to achieve seamless navigation. In this method, LS-SVM is trained to model the errors of INS when GPS is available. Once the LS-SVM is properly trained in the training phase, its prediction can be used to correct the INS errors during GPS outages. Simulations in INS/GPS integrated navigation showed improvements in positioning accuracy when GPS outages occur.


2014 ◽  
Vol 711 ◽  
pp. 338-341 ◽  
Author(s):  
Qi Wang ◽  
Cheng Shan Qian ◽  
Zi Jia Zhang ◽  
Chang Song Yang

To improve the navigation precision and reliability of autonomous underwater vehicles, a terrain-aided strapdown inertial navigation based on Federated Filter (FF) is proposed in this paper. The characteristics of strapdown inertial navigation system and terrain-aided navigation system are described in this paper, and Federated Filtering method is applied to the information fusion. Simulation experiments of novel integrated navigation system proposed in the paper were carried out comparing to the traditional Kalman filtering methods. The experiment results suggest that the Federated Filtering method is able to improve the long-time navigation precision and reliability, relative to the traditional Kalman Filtering method.


2012 ◽  
Vol 433-440 ◽  
pp. 3175-3180
Author(s):  
Hong Mei Wang ◽  
Ming Lu Zhang ◽  
Guang Zhu Meng

When global positioning system (GPS) signal outages, the integrated navigation accuracy of GPS and strap-down inertial navigation system (SINS) will decline with time, and even navigation system cannot work. To avoid this, a new design is introduced. When GPS works normally, square root filter estimates the errors of position, velocity and attitude and compensates the outputs of SINS. When GPS is out of order, back propagation neural network (BPNN) will take the place of GPS to calculate the error parameters, thus the accuracy of navigation will enhance. And in this paper, the unit of fault detection is added to detect whether GPS signal outages or not. The simulation results show the effectiveness of this method


2015 ◽  
Vol 69 (3) ◽  
pp. 561-581 ◽  
Author(s):  
Mohammad Shabani ◽  
Asghar Gholami

In underwater navigation, the conventional Error State Kalman Filter (ESKF) is used for combining navigation data where due to first order linearization of the nonlinear equations of the dynamics and measurements, considerable error is induced in estimated error state and covariance matrices. This paper presents an underwater integrated inertial navigation system using the unscented filter as an improved nonlinear version of the Kalman filter family. The designed system consists of a strap-down inertial navigation system accompanying Doppler velocity log and depth meter. In the proposed approach, to use the nonlinear capabilities of the unscented filtering approach the integrated navigation system is implemented in a direct approach where the nonlinear total state dynamic and and measurement models are utilised without any linearization. To our knowledge, no results have been reported in the literature on the experimental evaluation of the unscented-based integrated navigation system for underwater vehicles. The performance of the designed system is studied using real measurements. The results of the lake test show that the proposed system estimates the vehicle's position more accurately compared with the conventional ESKF structure.


Sign in / Sign up

Export Citation Format

Share Document