Research on Fault Diagnosis Method of Wind Turbine Based on Wavelet Analysis and LS-SVM

2013 ◽  
Vol 724-725 ◽  
pp. 593-597 ◽  
Author(s):  
Chang Liang Liu ◽  
Wei Xue Qi

Aiming at the fault characteristics of high-speed gearbox fault diagnosis of wind turbine, a fault diagnosis method of combining wavelet analysis with least square-support vector machine (LS-SVM) is proposed. According to the method, the energy of frequency bands generated by wavelet decomposition and reconstruction of the high-speed gearbox's vibration signals in different fault states is normalized as eigenvectors, forming training and testing samples of LS-SVM fault classifier. Train the LS-SVM fault diagnosis model with the training samples and test the accuracy with the testing samples. The result of research shows that the fault diagnosis method based on the wavelet analysis and LS-SVM has good diagnostics effect.

2011 ◽  
Vol 301-303 ◽  
pp. 1560-1567 ◽  
Author(s):  
Man Chen ◽  
Biao Ma

The paper analyzes the failure mechanism of the wet shifting clutch, and puts forward the concept that the deformation of the clutch friction plate leads to the irregular collision between the driving and driven sides of disengaged clutch and accordingly forms the transient pulse signal; the short-time Fourier analysis on the vibration signals of failed clutch obtained via test proves such concept. The transient pulse signal in the relatively strong background signal is clearly extracted through the wavelet decomposition after zero setting, and an efficient wet shifting clutch fault diagnosis method is hereby formed.


Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3105 ◽  
Author(s):  
Cong Dai Nguyen ◽  
Alexander Prosvirin ◽  
Jong-Myon Kim

The vibration signals of gearbox gear fault signatures are informative components that can be used for gearbox fault diagnosis and early fault detection. However, the vibration signals are normally non-linear and non-stationary, and they contain background noise caused by data acquisition systems and the interference of other machine elements. Especially in conditions with varying rotational speeds, the informative components are blended with complex, unwanted components inside the vibration signal. Thus, to use the informative components from a vibration signal for gearbox fault diagnosis, the noise needs to be properly distilled from the informational signal as much as possible before analysis. This paper proposes a novel gearbox fault diagnosis method based on an adaptive noise reducer–based Gaussian reference signal (ANR-GRS) technique that can significantly reduce noise and improve classification from a one-against-one, multiclass support vector machine (OAOMCSVM) for the fault types of a gearbox. The ANR-GRS processes the shaft rotation speed to access and remove noise components in the narrowbands between two consecutive sideband frequencies along the frequency spectrum of a vibration signal, enabling the removal of enormous noise components with minimal distortion to the informative signal. The optimal output signal from the ANR-GRS is then extracted into many signal feature vectors to generate a qualified classification dataset. Finally, the OAOMCSVM classifies the health states of an experimental gearbox using the dataset of extracted features. The signal processing and classification paths are generated using the experimental testbed. The results indicate that the proposed method is reliable for fault diagnosis in a varying rotational speed gearbox system.


Author(s):  
Chao Zhang ◽  
Zhongxiao Peng ◽  
Shuai Chen ◽  
Zhixiong Li ◽  
Jianguo Wang

During the operation process of a gearbox, the vibration signals can reflect the dynamic states of the gearbox. The feature extraction of the vibration signal will directly influence the accuracy and effectiveness of fault diagnosis. One major challenge associated with the extraction process is the mode mixing, especially under such circumstance of intensive frequency. A novel fault diagnosis method based on frequency-modulated empirical mode decomposition is proposed in this paper. Firstly, several stationary intrinsic mode functions can be obtained after the initial vibration signal is processed using frequency-modulated empirical mode decomposition method. Using the method, the vibration signal feature can be extracted in unworkable region of the empirical mode decomposition. The method has the ability to separate such close frequency components, which overcomes the major drawback of the conventional methods. Numerical simulation results showed the validity of the developed signal processing method. Secondly, energy entropy was calculated to reflect the changes in vibration signals in relation to faults. At last, the energy distribution could serve as eigenvector of support vector machine to recognize the dynamic state and fault type of the gearbox. The analysis results from the gearbox signals demonstrate the effectiveness and veracity of the diagnosis approach.


2013 ◽  
Vol 846-847 ◽  
pp. 620-623
Author(s):  
Wen Qing Zhao ◽  
Rui Cai ◽  
Li Wei Wang ◽  
De Wen Wang

Gearbox affect the normal operation of the wind turbines, to study the fault diagnosis, support vector method was used. Parameters selection is very important and decides the fault diagnosis precision. In order to overcome the blindness of man-made choice of the parameters in least squares support vector machine (LSSVM) and improve the accuracy and efficiency of fault diagnosis, a method based on LSSVM trained by genetic algorithm was proposed. This method searches the optimized parameters in LSSVM by taking advantage of the genetic algorithms powerful global searching ability. The research is provided using this method on the fault diagnosis of wind turbine gearbox and compared with the diagnostic method of LSSVM. The experimental results show that the method achieves a higher diagnostic accuracy.


2011 ◽  
Vol 55-57 ◽  
pp. 747-752
Author(s):  
Zhong Hai Li ◽  
Hao Fei Mao ◽  
Jian Guo Cui ◽  
Yan Zhang

The paper presents a motor bearing fault diagnosis method based on MSICA (Multi-scale Independent Principal Component Analysis) and LSSVM (Least Squares Support Vector Machine). MSICA is introduced into motor fault diagnosis. First, wavelet decomposition is used, and then ICA models are built by wavelet coefficients in each scale, which detect fault, and finally LSSVM is used to classify fault type. Conclusions are obtained from the analysis of the experimental data provided by Case Western Reserve University’s Bearing Data Website. And it indicates that the proposed method is simple and effective.


Sensors ◽  
2019 ◽  
Vol 19 (15) ◽  
pp. 3300 ◽  
Author(s):  
Liu ◽  
Qin ◽  
Liu

For compound fault detection of high-speed rail vibration signals, which presents a difficult problem, an early fault diagnosis method of an improved empirical mode decomposition (EMD) algorithm based on quartic C2 Hermite interpolation is presented. First, the quartic C2 Hermite interpolation improved EMD algorithm is used to decompose the original signal, and the intrinsic mode function (IMF) components are obtained. Second, singular value decomposition for the IMF components is performed to determine the principal components of the signal. Then, the signal is reconstructed and the kurtosis and approximate entropy values are calculated as the eigenvalues of fault diagnosis. Finally, fault diagnosis is executed based on the support vector machine (SVM). This method is applied for the fault diagnosis of high-speed rails, and experimental results show that the method presented in this paper is superior to the traditional EMD algorithm and greatly improves the accuracy of fault diagnosis.


Sign in / Sign up

Export Citation Format

Share Document