Urban Land Use Changes by the Integration of Remote Sensing, GIS, and Dynamics Modeling

2013 ◽  
Vol 726-731 ◽  
pp. 4645-4649
Author(s):  
Jia Hua Zhang ◽  
Cui Hao ◽  
Feng Mei Yao

We developed an approach to assess urban land use changes that incorporates socio-economic and environmental factors with multinomial logistic model, remote sensing data and GIS, and to quantify the impact of macro variables on land use of urban areas for the years 1990, 2000 and 2010 in Binhai New Area, China. The Markov transition matrix was designed to integrate with multinomial logistic model to illustrate and visualize the predicted land use surface. The multinomial logistic model was evaluated by means of Likelihood ratio test and Pseudo R-Square and showed a relatively good simulation. The prediction map of 2010 showed accurate rates 78.54%, 57.25% and 70.38%, respectively.

2020 ◽  
Vol 11 (5) ◽  
pp. 529-535
Author(s):  
Dan Abudu ◽  
Nigar Sultana Parvin ◽  
Geoffrey Andogah

Conventional approaches for urban land use land cover classification and quantification of land use changes have often relied on the ground surveys and urban censuses of urban surface properties. Advent of Remote Sensing technology supporting metric to centimetric spatial resolutions with simultaneous wide coverage, significantly reduced huge operational costs previously encountered using ground surveys. Weather, sensor’s spatial resolution and the complex compositions of urban areas comprising concrete, metallic, water, bare- and vegetation-covers, limits Remote Sensing ability to accurately discriminate urban features. The launch of Sentinel-1 Synthetic Aperture Radar, which operates at metric resolution and microwave frequencies evades the weather limitations and has been reported to accurately quantify urban compositions. This paper assessed the feasibility of Sentinel-1 SAR data for urban land use land cover classification by reviewing research papers that utilised these data. The review found that since 2014, 11 studies have specifically utilised the datasets.


Atmosphere ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 42 ◽  
Author(s):  
Wei Sun ◽  
Zhihong Liu ◽  
Yang Zhang ◽  
Weixin Xu ◽  
Xiaotong Lv ◽  
...  

The expansion of urban areas and the increase in the number of buildings and urbanization characteristics, such as roads, affect the meteorological environment in urban areas, resulting in weakened pollutant dispersion. First, this paper uses GIS (geographic information system) spatial analysis technology and landscape ecology analysis methods to analyze the dynamic changes in land cover and landscape patterns in Chengdu as a result of urban development. Second, the most appropriate WRF (Weather Research and Forecasting) model parameterization scheme is selected and screened. Land-use data from different development stages in the city are included in the model, and the wind speed and temperature results simulated using new and old land-use data (1980 and 2015) are evaluated and compared. Finally, the results of the numerical simulations by the WRF-Chem air quality model using new and old land-use data are coupled with 0.25° × 0.25°-resolution MEIC (Multi-resolution Emission Inventory for China) emission source data from Tsinghua University. The results of the sensitivity experiments using the WRF-Chem model for the city under different development conditions and during different periods are discussed. The meteorological conditions and pollution sources remained unchanged as the land-use data changed, which revealed the impact of urban land-use changes on the simulation results of PM2.5 atmospheric pollutants. The results show the following. (1) From 1980 to 2015, the land-use changes in Chengdu were obvious, and cultivated land exhibited the greatest changes, followed by forestland. Under the influence of urban land-use dynamics and human activities, both the richness and evenness of the landscape in Chengdu increased. (2) The microphysical scheme WSM3 (WRF Single–Moment 3 class) and land-surface scheme SLAB (5-layer diffusion scheme) were the most suitable for simulating temperatures and wind speeds in the WRF model. The wind speed and temperature simulation results using the 2015 land-use data were better than those using the 1980 land-use data when assessed according to the coincidence index and correlation coefficient. (3) The WRF-Chem simulation results obtained for PM2.5 using the 2015 land-use data were better than those obtained using the 1980 land-use data in terms of the correlation coefficient and standard deviation. The concentration of PM2.5 in urban areas was higher than that in the suburbs, and the concentration of PM2.5 was lower on Longquan Mountain in Chengdu than in the surrounding areas.


2020 ◽  
Vol 12 (3) ◽  
pp. 370
Author(s):  
Shuqi He ◽  
Xingpeng Chen ◽  
Zilong Zhang ◽  
Zhaoyue Wang ◽  
Mengran Hu

As an open artificial ecosystem, the development of a city requires the continuous input and output of material and energy, which is called urban metabolism, and includes catabolic (material-flow) and anabolic (material-accumulation) processes. Previous studies have focused on the catabolic and ignored the anabolic process due to data and technology problems. The combination of remote-sensing technology and high-resolution satellite images facilitates the estimation of cumulative material amounts in urban systems. This study focused on persistent accumulation, which is the metabolic response of urban land use/urban land expansion, building stock, and road stock to land-use changes. Building stock is an extremely cost-intensive and long-lived component of cumulative metabolism. The study measured building stocks of Jinchang, China’s nickel capital by using remote-sensing images and field-research data. The development of the built environment could be analyzed by comparing the stock of buildings on maps representing different time periods. The results indicated that material anabolism in Jinchang is a distance-dependent function, where the amounts and rates of material anabolism decrease with changes in distance to the central business district (CBD) and city administration center (CAC). The cumulative metabolic rate and cumulative total metabolism were observed to be increasing, however, the growth rate has decreased.


2019 ◽  
Vol 7 (5) ◽  
pp. 1137-1146
Author(s):  
Ogungbenro Matthew Taiwo ◽  
Salfarina Samsudin ◽  
Dzurllkanian @ ZulkarnainDaud ◽  
Olukolajo Michael Ayodele

Purpose: The purpose of this study is to review the quest for physical development and economic viability which has overshadowed the social aspect of sustainable development that produces a liveable urban settlement in many emerging economies. Many of the urban areas of developing countries are characterized by sporadic/unguided land-use changes as a result of urbanization coupled with poor planning and management of land-use. Unfortunately, these changes are impacting negatively on the social fabric of sustainable and this calls for urgent attention. Methodology: The study is based on an extensive review of literature on land-use changes and social sustainability in both the developed and emerging economies in order to identify gaps in practice and management of urban land development. Main Findings: The results showed that although a considerable investment has been made and enormous efforts geared towards achieving sustainable development in Nigeria urban areas, little or no attention devoted to social sustainability in the planning and execution of these projects has rather led to unsustainable development. Many developmental projects and planning were politicized and thereby jettisoned social sustainability in the process. Implication: It is important that urban land-use change should be appropriately monitored, purposively driven, and stakeholders must be responsive to promoting social sustainability to achieve a wholesome urban development. Novelty: This study to the best of our knowledge is the first attempt that links urban land-use change and social sustainability especially in Nigeria. It has also provided information to guide the land-use planners, the policymakers and other stakeholders towards achieving a wholesome urban land-use development.


2020 ◽  
Vol 12 (11) ◽  
pp. 1831 ◽  
Author(s):  
Ye Zhang ◽  
Kun Qin ◽  
Qi Bi ◽  
Weihong Cui ◽  
Gang Li

Landscape patterns and building functions are successfully used to provide the social sensing information of urban areas. However, previous studies treated ground objects equally, ignoring their size differences. Considering the different contributions of various types of ground objects in land-use classification, this paper measured nine area-weighted mean landscape-level metrics to describe landscape patterns based on the land-cover map, derived from remote sensing images. Additionally, the same idea was applied for identifying building functions. Impervious surfaces, which occupy the majority of urban areas, have a decisive impact on land-use classes. In terms of this, this paper proposed the impervious surface area-weighted building-based indexes from the building outline data. To better represent the physical structure of urban areas, the entire study was based on the analysis units delineated by the OpenStreetMap road network. Finally, a random forest model combining the landscape-level metrics and building-based indexes was adopted in Wuchang District of Wuhan city, China. The results showed that the proposed method was effective at describing landscape patterns and identifying building functions for accurate urban land-use classification, increasing the precision by 10.67%. In general, the contribution of landscape-level metrics to the urban land-use classification is slightly greater than that of building-based indexes. Moreover, different land-use types of analysis units express different landscape patterns. It is of great significance for improving urban form and guiding future urban design. The paper demonstrates that area-weighted landscape metrics and building-based indexes offer a better understanding of urban land use, which plays a vital role in urban planning, construction, and management.


2006 ◽  
Vol 2 (1) ◽  
Author(s):  
Shaharudin Idrus ◽  
Abdul Hadi Samad

The paper discusses over four decades of urban land use changes in the Langat River Basin in response to rapid development impulses that flowed from the more developed Klang Valley where Kuala Lumpur, the Malaysian capital city is situated. It proceeds to look into the impact of those changes on the ecosystem health of the basin. Federal development policies, strategies, programs and activities have transformed the basin from an industrial agricultural basin into an urbanized area. Being contiguous to the Klang Valley, the basin rose over the decades to be a choice location for not only foreign direct investment to produce manufactured products for export but also services and educational. The paper also discusses the status of the Langat Basin ecosystem health. The change to the land use has indeed impacted on the basin ecosystem health. Using GIS, land use changes in the basin over the decades were analysed to reveal the persistent direction of change. It is clear that the trend of land use change in the Langat Basin is the conversion from one type of land use to developing urbanised and full urban areas. What is implied by the changes are indicators that can be derived to show the sustainability of the ecosystem in the Langat Basin such as river flood, mud flood, land slide, etc.


2019 ◽  
Vol 10 (1) ◽  
pp. 15
Author(s):  
Eyad H Fadda ◽  
Fatemah Al Shebli ◽  
Ayshah Al Kabi

Many studies house indicated the increase of the proportion of urban areas over the arable land in many provinces of the Sultanate of Oman. This came as a result of urban growth and development processes taking place since the era of the Renaissance which started in 1970. Consequently, spatial variation in land use is an important issue to be taken into consideration, because lands are being converted to be less productive, due to the lack of raw soil, vegetation, and water as a result of human exploitation of the limited resources in different ways, in addition to the natural factors of droughts and floods and all that will eventually lead to land degradation. Barka province (wilayat) in al Batinah Governorate is one of the provinces, which has been affected by land cover/land use changes due to several reasons. Therefore, this study will focus on the determination of land use changes, whether commercial or residential that have been occurred in the province, in addition to the loss of agricultural areas and fertile land during the period from 1987 to 2015. Remote sensing and geographic information system (GIS) were utilized in order to delineate and to determine the cause of shrinking in the arable land and fertile land. Satellite images were used to detect the change in land use/land cover by applying selective digital image processing techniques such as supervised classification and change detection. Thematic maps were prepared using GIS software with attribute data about the land uses in the study area, which highlights and show the impact of urban growth on land degradation.


2019 ◽  
Vol 280 ◽  
pp. 01011 ◽  
Author(s):  
Nur Miladan ◽  
Feira Ariani ◽  
Shifa Nurul Indah Pertiwi ◽  
Raafi Setiawan ◽  
Kusumaningdyah Nurul Handayani

Urban flood risk is one of the frequent disasters in Indonesiancities. It causes the urban vulnerabilities including urban land use, community socio-economic assets, urban infrastructures and buildings. The massive urban land use changes will lead to the increase of flood riskif those changes do not manage properly. In other side, the increase offlood risk is also caused by the land use vulnerability. The assessment ofland use vulnerability on flood risk is an important element to identify theurban socio economic losses. Furthermore, the understanding of land usevulnerability could be an essential aspect for the urban land use plansrelating to the process of urban planning. This study has purpose to assessthe vulnerability of land use on flood risk in Surakarta City. This city hasseveral rivers flowing inside urban areas, and often, the flood occurrencestook place due to overflows of those rivers. This research used thedeductive approach. The data and information provided by the institutionaldocuments, and field observation. The result of the research indicated thatthe hazard level has more influence than the land use vulnerability level inthe calculation of flood risk. Furthermore, it demonstrated that the land usevulnerability level is not certainly linier correlated to the risk level.


2006 ◽  
Vol 2 ◽  
Author(s):  
Shaharudin Idrus ◽  
Abdul Hadi Samad

The paper discusses over four decades of urban land use changes in the Langat River Basin in response to rapid development impulses that flowed from the more developed Klang Valley where Kuala Lumpur, the Malaysian capital city is situated. It proceeds to look into the impact of those changes on the ecosystem health of the basin. Federal development policies, strategies, programs and activities have transformed the basin from an industrial agricultural basin into an urbanized area. Being contiguous to the Klang Valley, the basin rose over the decades to be a choice location for not only foreign direct investment to produce manufactured products for export but also services and educational. The paper also discusses the status of the Langat Basin ecosystem health. The change to the land use has indeed impacted on the basin ecosystem health. Using GIS, land use changes in the basin over the decades were analysed to reveal the persistent direction of change. It is clear that the trend of land use change in the Langat Basin is the conversion from one type of land use to developing urbanised and full urban areas. What is implied by the changes are indicators that can be derived to show the sustainability of the ecosystem in the Langat Basin such as river flood, mud flood, land slide, etc.


Sign in / Sign up

Export Citation Format

Share Document