scholarly journals The Use of Remote Sensing and GIS to Study Land Use Changes in Barka Wilaya, Oman

2019 ◽  
Vol 10 (1) ◽  
pp. 15
Author(s):  
Eyad H Fadda ◽  
Fatemah Al Shebli ◽  
Ayshah Al Kabi

Many studies house indicated the increase of the proportion of urban areas over the arable land in many provinces of the Sultanate of Oman. This came as a result of urban growth and development processes taking place since the era of the Renaissance which started in 1970. Consequently, spatial variation in land use is an important issue to be taken into consideration, because lands are being converted to be less productive, due to the lack of raw soil, vegetation, and water as a result of human exploitation of the limited resources in different ways, in addition to the natural factors of droughts and floods and all that will eventually lead to land degradation. Barka province (wilayat) in al Batinah Governorate is one of the provinces, which has been affected by land cover/land use changes due to several reasons. Therefore, this study will focus on the determination of land use changes, whether commercial or residential that have been occurred in the province, in addition to the loss of agricultural areas and fertile land during the period from 1987 to 2015. Remote sensing and geographic information system (GIS) were utilized in order to delineate and to determine the cause of shrinking in the arable land and fertile land. Satellite images were used to detect the change in land use/land cover by applying selective digital image processing techniques such as supervised classification and change detection. Thematic maps were prepared using GIS software with attribute data about the land uses in the study area, which highlights and show the impact of urban growth on land degradation.

2013 ◽  
Vol 726-731 ◽  
pp. 4645-4649
Author(s):  
Jia Hua Zhang ◽  
Cui Hao ◽  
Feng Mei Yao

We developed an approach to assess urban land use changes that incorporates socio-economic and environmental factors with multinomial logistic model, remote sensing data and GIS, and to quantify the impact of macro variables on land use of urban areas for the years 1990, 2000 and 2010 in Binhai New Area, China. The Markov transition matrix was designed to integrate with multinomial logistic model to illustrate and visualize the predicted land use surface. The multinomial logistic model was evaluated by means of Likelihood ratio test and Pseudo R-Square and showed a relatively good simulation. The prediction map of 2010 showed accurate rates 78.54%, 57.25% and 70.38%, respectively.


2020 ◽  
Vol 11 (5) ◽  
pp. 529-535
Author(s):  
Dan Abudu ◽  
Nigar Sultana Parvin ◽  
Geoffrey Andogah

Conventional approaches for urban land use land cover classification and quantification of land use changes have often relied on the ground surveys and urban censuses of urban surface properties. Advent of Remote Sensing technology supporting metric to centimetric spatial resolutions with simultaneous wide coverage, significantly reduced huge operational costs previously encountered using ground surveys. Weather, sensor’s spatial resolution and the complex compositions of urban areas comprising concrete, metallic, water, bare- and vegetation-covers, limits Remote Sensing ability to accurately discriminate urban features. The launch of Sentinel-1 Synthetic Aperture Radar, which operates at metric resolution and microwave frequencies evades the weather limitations and has been reported to accurately quantify urban compositions. This paper assessed the feasibility of Sentinel-1 SAR data for urban land use land cover classification by reviewing research papers that utilised these data. The review found that since 2014, 11 studies have specifically utilised the datasets.


Author(s):  
Marj Tonini ◽  
Joana Parente ◽  
Mario Pereira

Abstract. The wildland-/rural-urban interface (WUI/RUI) is a particularly important aspect of the fire regime. In Mediterranean basin most of the fires in this pyro region are caused by humans and the risk and consequences are particularly high due to the close proximity to population, human infrastructures and urban areas. Population increase, urban growth and the rapid changes in land use incurred in Europe over the last 30 years has been unprecedented, especially nearby the metropolitan areas, and some of these trends are expected to continue. Associated to high socioeconomic development, Portugal experienced in the last decades significant land cover/land use changes (LCLUC), population dynamics and demographic trends in response to migration, rural abandonment, and ageing of rural population. This study aims to assess the evolution of RUI in Portugal, from 1990 to 2012, based on LCLUC providing also a quantitative characterization of forest fires dynamics in relation to the burnt area. Obtained results disclose important LCLUC which spatial distribution is far from uniform within the territory. A significant increase in artificial surfaces is registered nearby the main metropolitan communities of the northwest and littoral-central and southern regions, whilst the abandonment of agricultural land nearby the inland urban areas leads to an increase of uncultivated semi-natural and forest areas. Within agricultural areas, heterogeneous patches suffered the greatest changes and are the main contributors to the increase of urban areas. Moreover these are among the LCLU classes with higher burnt area, reasons why heterogeneous agricultural areas have been included in the definition of RUI. Finally, the mapped RUI’s area, burnt area and burnt area within RUI allow to conclude that, form 1990 to 2012 in Portugal, RUI increased more than two thirds and total burnt area decreased one third. Nevertheless, burnt area within RUI doubled, which emphasize the significance of RUI for land and fire managers. This research provides a first quantitative global assessment of RUI in Portugal and presents an innovative analysis on the impact of land use changes on burnt areas.


Author(s):  
Gofamodimo Mashame ◽  
Felicia Akinyemi

Land degradation (LD) is among the major environmental and anthropogenic problems driven by land use-land cover (LULC) and climate change worldwide. For example, poor LULC practises such as deforestation, livestock overstocking, overgrazing and arable land use intensification on steep slopes disturbs the soil structure leaving the land susceptible to water erosion, a type of physical land degradation. Land degradation related problems exist in Sub-Saharan African countries such as Botswana which is semi-arid in nature. LULC and LD linkage information is still missing in many semi-arid regions worldwide.Mapping seasonal LULC is therefore very important in understanding LULC and LD linkages. This study assesses the impact of seasonal LULC variation on LD utilizing Remote Sensing (RS) techniques for Palapye region in Central District, Botswana. LULC classes for the dry and rainy seasons were classified using LANDSAT 8 images at Level I according to the Food and Agriculture Organization (FAO) International Organization of Standardization (ISO) code 19144. Level I consists of 10 LULC classes. The seasonal variations in LULC are further related to LD susceptibility in the semi-arid context. The results suggest that about 985 km² (22%) of the study area is susceptible to LD by water, major LULC types affected include: cropland, paved/rocky material, bare land, built-up area, mining area, and water body. Land degradation by water susceptibility due to seasonal land use-land cover variations is highest in the east of the study area where there is high cropland to bare land conversion.


Author(s):  
Gofamodimo Mashame ◽  
Felicia Akinyemi

Land degradation (LD) is among the major environmental and anthropogenic problems driven by land use-land cover (LULC) and climate change worldwide. For example, poor LULC practises such as deforestation, livestock overstocking, overgrazing and arable land use intensification on steep slopes disturbs the soil structure leaving the land susceptible to water erosion, a type of physical land degradation. Land degradation related problems exist in Sub-Saharan African countries such as Botswana which is semi-arid in nature. LULC and LD linkage information is still missing in many semi-arid regions worldwide.Mapping seasonal LULC is therefore very important in understanding LULC and LD linkages. This study assesses the impact of seasonal LULC variation on LD utilizing Remote Sensing (RS) techniques for Palapye region in Central District, Botswana. LULC classes for the dry and rainy seasons were classified using LANDSAT 8 images at Level I according to the Food and Agriculture Organization (FAO) International Organization of Standardization (ISO) code 19144. Level I consists of 10 LULC classes. The seasonal variations in LULC are further related to LD susceptibility in the semi-arid context. The results suggest that about 985 km² (22%) of the study area is susceptible to LD by water, major LULC types affected include: cropland, paved/rocky material, bare land, built-up area, mining area, and water body. Land degradation by water susceptibility due to seasonal land use-land cover variations is highest in the east of the study area where there is high cropland to bare land conversion.


Geosciences ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 312
Author(s):  
Barbara Wiatkowska ◽  
Janusz Słodczyk ◽  
Aleksandra Stokowska

Urban expansion is a dynamic and complex phenomenon, often involving adverse changes in land use and land cover (LULC). This paper uses satellite imagery from Landsat-5 TM, Landsat-8 OLI, Sentinel-2 MSI, and GIS technology to analyse LULC changes in 2000, 2005, 2010, 2015, and 2020. The research was carried out in Opole, the capital of the Opole Agglomeration (south-western Poland). Maps produced from supervised spectral classification of remote sensing data revealed that in 20 years, built-up areas have increased about 40%, mainly at the expense of agricultural land. Detection of changes in the spatial pattern of LULC showed that the highest average rate of increase in built-up areas occurred in the zone 3–6 km (11.7%) and above 6 km (10.4%) from the centre of Opole. The analysis of the increase of built-up land in relation to the decreasing population (SDG 11.3.1) has confirmed the ongoing process of demographic suburbanisation. The paper shows that satellite imagery and GIS can be a valuable tool for local authorities and planners to monitor the scale of urbanisation processes for the purpose of adapting space management procedures to the changing environment.


2019 ◽  
Vol 8 (1) ◽  
pp. 87-91
Author(s):  
Bhanu Priya Chouhan ◽  
Monika Kannan

The world is undergoing the largest wave of urban growth in history. More than half of the world’s population now lives in towns and cities, and by 2030 this number will swell to about 5 billion. ‘Urbanization has the potential to usher in a new era of wellbeing, resource efficiency and economic growth. But due to increased population the pressure of demand also increases in urban areas’ (Drakakis-Smith, David, 1996). The loss of agricultural land to other land uses occasioned by urban growth is an issue of growing concern worldwide, particularly in the developing countries like India. This paper is an attempt to assess the impact of urbanization on land use and land cover patterns in Ajmer city. Recent trends indicate that the rural urban migration and religious significance of the place attracting thousands of tourists every year, have immensely contributed in the increasing population of city and is causing change in land use patterns. This accelerating urban sprawl has led to shrinking of the agricultural land and land holdings. Due to increased rate of urbanization, the agricultural areas have been transformed into residential and industrial areas (Retnaraj D,1994). There are several key factors which cause increase in population here such as Smart City Projects, potential for employment, higher education, more comfortable and quality housing, better health facilities, high living standard etc. Population pressure not only directly increases the demand for food, but also indirectly reduces its supply through building development, environmental degradation and marginalization of food production (Aldington T, 1997). Also, there are several issues which are associated with continuous increase in population i.e. land degradation, pollution, poverty, slums, unaffordable housing etc. Pollution, formulation of slums, transportation congestion, environmental hazards, land degradation and crime are some of the major impacts of urbanization on Ajmer city. This study involves mapping of land use patterns by analyzing data and satellite imagery taken at different time periods. The satellite images of year 2000 and 2017 are used. The change detection techniques are used with the help of Geographical Information System software like ERDAS and ArcGIS. The supervised classification of all the three satellite images is done by ERDAS software to demarcate and analyze land use change.


Author(s):  
Андрій Юрійович Шелестов ◽  
Алла Миколаївна Лавренюк ◽  
Богдан Ялкапович Яйлимов ◽  
Ганна Олексіївна Яйлимова

Ukraine is an associate member of the European Union and in the coming years it is expected that all data and services already used by EU countries will be available to Ukraine. The lack of quality national products for assessing the development and planning of urban growth makes it impossible to assess the impact of cities on the environment and human health. The first steps to create such products for the cities of Ukraine were initiated within the European project "SMart URBan Solutions for air quality, disasters and city growth" (SMURBS), in which specialists from the Space Research Institute of NAS of Ukraine and SSA of Ukraine received the first city atlas for the Kyiv city, which was similar to the European one. However, the resulting product had significantly fewer types of land use than the European one and therefore the question of improving the developed technology arose. The main purpose of the work is to analyze the existing technology of European service Urban Atlas creation and its improvement by developing a unified algorithm for building an urban atlas using all available open geospatial and satellite data for the cities of Ukraine. The development of such technology is based on our own technology for classifying satellite time series with a spatial resolution of 10 meters to build a land cover map, as well as an algorithm for unifying open geospatial data to urban atlases Copernicus. The technology of construction of the city atlas developed in work, based on the intellectual model of classification of a land cover, can be extended to other cities of Ukraine. In the future, the creation of such a product on the basis of data for different years will allow to assess changes in land use and make a forecast for further urban expansion. The proposed information technology for constructing the city atlas will be useful for assessing the dynamics of urban growth and closely related social and economic indicators of their development. Based on it, it is also possible to assess indicators of achieving the goals of sustainable development, such as 11.3.1 "The ratio of land consumption and population growth." The study shows that the city atlas obtained for the Kyiv city has a high level of quality and has comparable land use classes with European products. It indicates that such a product can be used in government decision-making services.


2021 ◽  
Vol 10 (12) ◽  
pp. 809
Author(s):  
Jing Sun ◽  
Suwit Ongsomwang

Land surface temperature (LST) is an essential parameter in the climate system whose dynamics indicate climate change. This study aimed to assess the impact of multitemporal land use and land cover (LULC) change on LST due to urbanization in Hefei City, Anhui Province, China. The research methodology consisted of four main components: Landsat data collection and preparation; multitemporal LULC classification; time-series LST dataset reconstruction; and impact of multitemporal LULC change on LST. The results revealed that urban and built-up land continuously increased from 2.05% in 2001 to 13.25% in 2020. Regarding the impact of LULC change on LST, the spatial analysis demonstrated that the LST difference between urban and non-urban areas had been 1.52 K, 3.38 K, 2.88 K and 3.57 K in 2001, 2006, 2014 and 2020, respectively. Meanwhile, according to decomposition analysis, regarding the influence of LULC change on LST, the urban and built-up land had an intra-annual amplitude of 20.42 K higher than other types. Thus, it can be reconfirmed that land use and land cover changes due to urbanization in Hefei City impact the land surface temperature.


2012 ◽  
Vol 49 (5) ◽  
pp. 980-989 ◽  
Author(s):  
S. Bajocco ◽  
A. De Angelis ◽  
L. Perini ◽  
A. Ferrara ◽  
L. Salvati

Sign in / Sign up

Export Citation Format

Share Document