Enhanced Geothermal Systems Projects and its Potential for Carbon Storage

2013 ◽  
Vol 732-733 ◽  
pp. 109-115 ◽  
Author(s):  
Chao Yin Feng

Enhanced Geothermal Systems represent a series of technology, which use engineering methods to improve the performance of geothermal power plant. In some geothermal fields, the rocks are in high temperature but a low permeability, or the subsurface water is scarce. In these geological conditions, cool water was injected into the geothermal wells to fracture the tight rock and create man-made reservoir for thermal exploitation. Furthermore, these engineering methods can be utilized to improve the productivity of pre-existing hydrothermal power plants. To save water and treat the global warming, using carbon dioxide instead of water as working fluid was proposed. Numerical simulation reveals that the carbon dioxide has numerous advantages over water as working fluid in the heat mining process. The precipitation caused by carbon dioxide will restore part of carbon dioxide in the rock and reduce the micro-seismicity risk.

2020 ◽  
Author(s):  
Hannah Rose Doran ◽  
Theo Renaud ◽  
Gioia Falcone ◽  
Lehua Pan ◽  
Patrick Verdin

Abstract Geothermal energy is a baseload resource that has the potential to contribute significantly to the transition to a low-carbon future. Alternative (unconventional) deep geothermal designs are thus needed to provide a secure and efficient energy supply. Current Enhanced Geothermal Systems (EGS) are under technical review as a result of the associated low recovery factors and risk of induced seismicity in connection with reservoir stimulation operations, and Supercritical EGS (SEGS) concepts are still under early research and development. The Newberry and Icelandic Deep Drilling Projects (NDDP and IDDP) aid these developments to drill deeper into very hot temperature zones. An in-depth sensitivity analysis was investigated considering a deep borehole closed-loop heat exchanger (DBHE) to overcome the current limitations of deep EGS. Using the DBHE, cold working fluid is pumped down in the outer annulus and rises to the surface via natural convection or is pumped up via an inner tubing. A T2Well/EOS1 model previously calibrated on an experimental DBHE in Hawaii was adapted to the current NWG 55-29 well at the Newberry volcano site in Central Oregon. A sensitivity analysis was carried out, including parameters such as: the working fluid mass flow rate, the casing and cement thermal properties and the wellbore radii dimensions. The results allow an assessment of key thermodynamics within the wellbore and provide an insight into how heat is lost/gained throughout the system. This analysis was performed under the assumption of sub-critical conditions. Requirements for further software development are briefly discussed, which would facilitate the modelling of unconventional geothermal wells in supercritical systems.


Author(s):  
Igor L. Pioro

Supercritical Fluids (SCFs) have unique thermophyscial properties and heat-transfer characteristics, which make them very attractive for use in power industry. In this chapter, specifics of thermophysical properties and heat transfer of SCFs such as water, carbon dioxide, and helium are considered and discussed. Also, particularities of heat transfer at Supercritical Pressures (SCPs) are presented, and the most accurate heat-transfer correlations are listed. Supercritical Water (SCW) is widely used as the working fluid in the SCP Rankine “steam”-turbine cycle in fossil-fuel thermal power plants. This increase in thermal efficiency is possible by application of high-temperature reactors and power cycles. Currently, six concepts of Generation-IV reactors are being developed, with coolant outlet temperatures of 500°C~1000°C. SCFs will be used as coolants (helium in GFRs and VHTRs, and SCW in SCWRs) and/or working fluids in power cycles (helium, mixture of nitrogen (80%) and helium (20%), nitrogen and carbon dioxide in Brayton gas-turbine cycles, and SCW/“steam” in Rankine cycle).


Energy ◽  
2020 ◽  
Vol 206 ◽  
pp. 118062
Author(s):  
Jiawei Li ◽  
Wanju Yuan ◽  
Yin Zhang ◽  
Claudia Cherubini ◽  
Alexander Scheuermann ◽  
...  

2015 ◽  
Author(s):  
Ana Laura Soto-Sánchez ◽  
Carlos Rubio-Maya ◽  
Alicia Aguilar Corona ◽  
Oscar Chávez

Carbon dioxide (CO2) emitted from various sources, mainly fossil fuel power plants, is considered responsible of the global warming effect. Many processes and techniques are still under research for CO2 capture and sequestration. On the other hand, it is proposed that the geothermal heat be mined from geothermal reservoirs using captured CO2. In this sense, some theoretical studies show feasibility of using supercritical carbon dioxide (sCO2) as a heat mining media in such geothermal reservoirs. In this work, it is carried out a set of numerical simulations to determine the most effective distance between injection and production wells for extracting geothermal energy utilizing sCO2 (Water is used for comparison). In the study, the permeability is considered in the range of 0.5 mD to 3.5 mD, with the aim of determining also the critical point in which sCO2 works better than water (H2O) as a working fluid. The remaining properties such as volume, density and other thermal properties remain fixed. Afterwards, it is constructed a numerical model which is implemented in TOUGH2 and PETRASIM 5 software to simulate the cases established. In the model, it is considered a simplified control volume, i.e. only one well for injection and one for production, assuming a constant flow rate at the inlet and at the outlet, meaning that sequestration is not taken into account. A length of 300 meter is defined for reservoir thickness, considering also a pressure and temperature of 100 bar and 200 °C, respectively. The energy mined is estimated for a period of twenty-five years. As typically, the sensitivity analysis is performed by varying only one property and keeping the remaining properties constant, isolating in this way the effect of such variable. Results show that for small permeabilities H2O works better than sCO2, but it is possible to assure that for permeabilities greater than 1 mD, sCO2 presents more advantages as extracting heat media instead of water. Both, H2O and sCO2 show a linear behavior. A deep analysis is necessary to carry out, because results shows that sCO2 works better in an intermediate zone (greater than 200 meter length, but smaller than 800 meter length). An unusual behavior is presented when the distances between the wells are varied; water shows a linear behavior increasing monotonically, while sCO2 shows a nonlinear behavior for some distances sCO2 works better. As expected, the more the distance, the greater the amount of the energy mined due to the volume related with each one of the distances.


Author(s):  
Dustin Crandall ◽  
Goodarz Ahmadi ◽  
Grant Bromhal

Fractures in rocks enable the motion of fluids through the large, hot geologic formations of geothermal reservoirs. The heat transfer from the surrounding rock mass to the fluid flowing through a fracture depends on the geometry of the fracture, the fluid/solid properties, and the flow rate through the fracture. A numerical study was conducted to evaluate the changes in heat transfer to the fluid flowing through a rock fracture with changes in the flow rate. The aperture distribution of the rock fracture, originally created within Berea sandstone and imaged using a CT-scanner, is well described by a Gaussian distribution and has a mean aperture of approximately 0.6 mm. Water was used as the working fluid, enabling an evaluation of the efficiency of heat flux to the fluid along the flow path of a hot dry geothermal system. As the flow through the fracture was increased to a Reynolds number greater than 2300 the effect of channeling through large aperture regions within the fracture were observed to become increasingly important. For the fastest flows modeled the heat flux to the working fluids was reduced due to a shorter residence time of the fluid in the fracture. Understanding what conditions can maximize the amount of energy obtained from fractures within a hot dry geologic field can improve the operation and long-term viability of enhanced geothermal systems.


Fluids ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 63
Author(s):  
Zuo ◽  
Weijermars

A simple, semi-analytical heat extraction model is presented for hydraulically fractured dry reservoirs containing two subparallel horizontal wells, connected by a horizontal fracture channel, using injected brine as the working fluid. Heat equations are used to quantify the heat conduction between fracture walls and circulating brine. The brine temperature profiles are calculated for different combinations of fracture widths, working fluid circulation rates, and initial fracture wall temperatures. The longevity of the geothermal heat extraction process is assessed for a range of working fluid injection rates. Importantly, dry geothermal reservoirs will not recharge heat by the geothermal flux on the time scale of any commercial heat extraction project. A production plan is proposed, with periodic brine circulation maintained in a diurnal schedule with 8 h active production alternating with 16 h of pump switched off. A quasi-steady state is achieved after both the brine temperature and rock temperature converge to a limit state allowing fracture-wall reheating by conduction from the rock interior in the diurnal production schedule. The results of this study could serve as a fast tool for assisting the planning phase of geothermal reservoir design as well as for operational monitoring and management.


Sign in / Sign up

Export Citation Format

Share Document