Utilization of carbon dioxide from coal-based power plants as a heat transfer fluid for electricity generation in enhanced geothermal systems (EGS)

Energy ◽  
2013 ◽  
Vol 57 ◽  
pp. 505-512 ◽  
Author(s):  
Arun Ram Mohan ◽  
Uday Turaga ◽  
Vishakha Shembekar ◽  
Derek Elsworth ◽  
Sarma V. Pisupati
2013 ◽  
Vol 732-733 ◽  
pp. 109-115 ◽  
Author(s):  
Chao Yin Feng

Enhanced Geothermal Systems represent a series of technology, which use engineering methods to improve the performance of geothermal power plant. In some geothermal fields, the rocks are in high temperature but a low permeability, or the subsurface water is scarce. In these geological conditions, cool water was injected into the geothermal wells to fracture the tight rock and create man-made reservoir for thermal exploitation. Furthermore, these engineering methods can be utilized to improve the productivity of pre-existing hydrothermal power plants. To save water and treat the global warming, using carbon dioxide instead of water as working fluid was proposed. Numerical simulation reveals that the carbon dioxide has numerous advantages over water as working fluid in the heat mining process. The precipitation caused by carbon dioxide will restore part of carbon dioxide in the rock and reduce the micro-seismicity risk.


Energies ◽  
2017 ◽  
Vol 11 (1) ◽  
pp. 37 ◽  
Author(s):  
Jose Rogada ◽  
Lourdes Barcia ◽  
Juan Martinez ◽  
Mario Menendez ◽  
Francisco de Cos Juez

Power plants producing energy through solar fields use a heat transfer fluid that lends itself to be influenced and changed by different variables. In solar power plants, a heat transfer fluid (HTF) is used to transfer the thermal energy of solar radiation through parabolic collectors to a water vapor Rankine cycle. In this way, a turbine is driven that produces electricity when coupled to an electric generator. These plants have a heat transfer system that converts the solar radiation into heat through a HTF, and transfers that thermal energy to the water vapor heat exchangers. The best possible performance in the Rankine cycle, and therefore in the thermal plant, is obtained when the HTF reaches its maximum temperature when leaving the solar field (SF). In addition, it is necessary that the HTF does not exceed its own maximum operating temperature, above which it degrades. The optimum temperature of the HTF is difficult to obtain, since the working conditions of the plant can change abruptly from moment to moment. Guaranteeing that this HTF operates at its optimal temperature to produce electricity through a Rankine cycle is a priority. The oil flowing through the solar field has the disadvantage of having a thermal limit. Therefore, this research focuses on trying to make sure that this fluid comes out of the solar field with the highest possible temperature. Modeling using data mining is revealed as an important tool for forecasting the performance of this kind of power plant. The purpose of this document is to provide a model that can be used to optimize the temperature control of the fluid without interfering with the normal operation of the plant. The results obtained with this model should be necessarily contrasted with those obtained in a real plant. Initially, we compare the PID (proportional–integral–derivative) models used in previous studies for the optimization of this type of plant with modeling using the multivariate adaptive regression splines (MARS) model.


2021 ◽  
Vol 111 ◽  
pp. 386-390
Author(s):  
Maureen Cropper ◽  
Ryna Cui ◽  
Sarath Guttikunda ◽  
Nate Hultman ◽  
Puja Jawahar ◽  
...  

Under the Paris Agreement, India has pledged that 40 percent of its electricity generating capacity will come from non-fossil-fuel sources by the year 2030; however, this pledge does not limit total coal-fired generating capacity. As of 2019, planned increases in coal-fired capacity totaled 95 gigawatts--46 percent of installed coal-fired capacity in 2018. In this paper, we estimate the carbon dioxide benefits and health co-benefits of not building these plants. We also estimate the mortality impacts of the 2018 stock of coal-fired power plants and use it to calculate the tax on electricity generation from coal that would internalize these damages.


Author(s):  
Igor L. Pioro

Supercritical Fluids (SCFs) have unique thermophyscial properties and heat-transfer characteristics, which make them very attractive for use in power industry. In this chapter, specifics of thermophysical properties and heat transfer of SCFs such as water, carbon dioxide, and helium are considered and discussed. Also, particularities of heat transfer at Supercritical Pressures (SCPs) are presented, and the most accurate heat-transfer correlations are listed. Supercritical Water (SCW) is widely used as the working fluid in the SCP Rankine “steam”-turbine cycle in fossil-fuel thermal power plants. This increase in thermal efficiency is possible by application of high-temperature reactors and power cycles. Currently, six concepts of Generation-IV reactors are being developed, with coolant outlet temperatures of 500°C~1000°C. SCFs will be used as coolants (helium in GFRs and VHTRs, and SCW in SCWRs) and/or working fluids in power cycles (helium, mixture of nitrogen (80%) and helium (20%), nitrogen and carbon dioxide in Brayton gas-turbine cycles, and SCW/“steam” in Rankine cycle).


2019 ◽  
Vol 135 ◽  
pp. 846-855 ◽  
Author(s):  
Yibin Huang ◽  
Yanjun Zhang ◽  
Ziwang Yu ◽  
Yueqiang Ma ◽  
Chi Zhang

Sign in / Sign up

Export Citation Format

Share Document