Sound Analysis and Synthesis for Audio Simulation System of Flight Simulator

2013 ◽  
Vol 748 ◽  
pp. 708-712 ◽  
Author(s):  
Xiao Wei Sheng ◽  
Jun Wei Han ◽  
Ming Hui Hao

Through simulating the feelings of vision, hearing, motion and force during flight, the flight simulator can build a realistic flight environment on the ground. Therefore, Flight simulators have an important role in pilot training field. Audio simulation system is a key component of the flight simulator, it has direct impact on the realism and immersion of flight simulation. In this paper, we introduced the development procedure of audio simulation system shortly. Software implementation and its key development technology were mainly focused for expressing the necessity of extracting sound sources from original cockpit recordings. Based on the development method and practical recording conditions, we dicussed sound short-time Fourier analysis and synthesis technology, and sound linear prediction analysis and synthesis technology in detail. The objective of using these technologies was to extract sound sources from original recordings and this was also the preparation step of sound simulation.

2021 ◽  
Vol 11 (7) ◽  
pp. 3288
Author(s):  
Jiangwei Zhao ◽  
Dongsu Wu ◽  
Hongbin Gu

In the design of the six degrees of freedom (6-DOF) flight simulation system, the unmodeled dynamic, transient performance and steady-state performance of the system are generally concerned. Considering that the model of flight simulation system is highly nonlinear and requires high response speed and high stability, this paper applies L1 adaptive controller to the control of flight simulation platform. The controller has a low-pass filter in feedback loop to avoid high frequencies in the control signals, and the required transient performance can be enhanced by increasing the adaptive gain, which can improve the transient, stability, and smoothness of the flight simulator platform. The performance of the L1 adaptive controller is obtained by comparison with the traditional model reference adaptive controller (MRAC). In addition to maintaining the good transient response of MRAC, the L1 adaptive controller improves the stability of the system. The output amplitude of the actuator is reduced by 39.95%, which effectively reduces the performance requirements of the actuator. Some additional experimental evaluations are carried out to show the performance of the controller.


2020 ◽  
Vol 43 (12) ◽  
pp. 2275-2288
Author(s):  
Pepijn A. Scholten ◽  
Marinus M. van Paassen ◽  
Q. Ping Chu ◽  
Max Mulder

2014 ◽  
Vol 543-547 ◽  
pp. 1305-1308
Author(s):  
Xiao Feng Liu ◽  
Jing Wei Yu ◽  
Hai Tao Wang ◽  
Zhao Wen Fang

For helicopter structural characteristics, this article focuses on the helicopter to take off, hover and other state aerodynamic analysis, the establishment of the fuselage-landing gear dynamics model; while the helicopter simulator simulation system are described, and the kinetic model was built simulation analysis, simulation results and the actual flight conditions consistent, indicating that the model is correct, there is a certain reference value.


2012 ◽  
Vol 116 (1177) ◽  
pp. 287-302 ◽  
Author(s):  
D. Vechtel

Abstract A flight simulator study has been carried out to evaluate the performance of modern flight control systems encountering curved wake vortices. During the decay process the shape of wake vortices alters significantly which has an influence on the encounter characteristics and thus on the encounter hazard. To analyse most realistic wake encounters, flow fields of matured vortices have been generated with large-eddy-simulations. These were used for the determination of induced force and moment histories during the encounter. The force and moment histories have been implemented into the equations of motions of a 6 DoF flight simulation. For the sake of comparison encounters have also been simulated with straight vortices as they were mostly used for many other investigations. The most important goal of the study was to analyse the difference between these ideally straight vortices and vortices with a more realistic shape regarding encounter acceptance. The simulator study was conducted in an A330 motion-based full-flight simulator with pilots-in-the-loop. The analysed scenario was a wake encounter during final approach. The encounter conditions corresponded to a heavy-behind-heavy situation for Instrument Flight Rules (IFR) operations. The aircraft was flown either manually (in normal law) or with autopilot engaged. Altogether 93 encounters have been simulated, 38 with straight and 55 encounters with curved vortices. For encounters under manual control the simulator study revealed a potential risk of pilot induced oscillations (PIO) during encounters with curved vortices. With autopilot engaged not even one encounter with curved vortices was classified to be unacceptable. Although significant aircraft response was experienced the autopilot never disengaged automatically in any encounter. Altogether about 12 percent of the encounters were not accepted by the pilots. This is indeed a significant number, especially as the analysed scenarios can be regarded to be realistic situations which can occur in reality even if the applicable separation distances are applied.


2014 ◽  
Vol 684 ◽  
pp. 165-168
Author(s):  
Yong Zhou Jiang ◽  
Yong Ji Lu ◽  
Yan Ding ◽  
Xiao Yan Yu

The flight process often in turbulence. Atmospheric turbulence causes flight bump, long time will cause damage to the aircraft structure fatigue. This paper establishes a model for atmospheric disturbance, flight simulation. Based on the aircraft through all kinds of atmospheric disturbance is studied. The use of embedded database and real-time simulation platform, built a run, in the PC machine can be used for dynamic model for real-time simulation of flight simulator.


Sign in / Sign up

Export Citation Format

Share Document