scholarly journals Hybridization of Genetic Particle Swarm Optimization Algorithm with Symbiotic Organisms Search Algorithm for Solving Optimal Reactive Power Dispatch Problem

Author(s):  
Kanagasabai Lenin

In this work Hybridization of Genetic Particle Swarm Optimization Algorithm with Symbiotic Organisms Search Algorithm (HGPSOS) has been done for solving the power dispatch problem. Genetic particle swarm optimization problem has been hybridized with Symbiotic organisms search (SOS) algorithm to solve the problem. Genetic particle swarm optimization algorithm is formed by combining the Particle swarm optimization algorithm (PSO) with genetic algorithm (GA).  Symbiotic organisms search algorithm is based on the actions between two different organisms in the ecosystem- mutualism, commensalism and parasitism. Exploration process has been instigated capriciously and every organism specifies a solution with fitness value.  Projected HGPSOS algorithm improves the quality of the search.  Proposed HGPSOS algorithm is tested in IEEE 30, bus test system- power loss minimization, voltage deviation minimization and voltage stability enhancement has been attained.

2012 ◽  
Vol 6-7 ◽  
pp. 736-741
Author(s):  
Xin Min Ma ◽  
Lin Li Wu

A new algorithm for timetabling based on particle swarm optimization algorithm was proposed, and the key problems such as particle coding, fitness function fabricating, particle swarm initialization and crossover operation were settled. The fitness value declines when the evolution generation increases. The results showed that it was a good solution for course timetabling problem in the educational system.


2013 ◽  
Vol 771 ◽  
pp. 173-177
Author(s):  
Hui Lin Shan ◽  
Yin Sheng Zhang

This paper presents principles of a down-converted mixer for four sub-harmonic and proposes a particle swarm optimization algorithm as a global search algorithm, and the performance equation is used as the assessment of the mixer circuit optimization method. Dielectric substrate adopts Electronic Materials with RF/Duroid 5880 whose dielectric constant is 2.20 and 5mil in thickness. The optimization algorithm can quickly get optimal results. The simulation results show that this mixer achieves higher 1 dB compression point, loss of frequency conversion which is less than 15 dB and good linearity.


2018 ◽  
Vol 7 (4.6) ◽  
pp. 275
Author(s):  
Chandrasekhara Reddy T ◽  
Srivani V ◽  
A. Mallikarjuna Reddy ◽  
G. Vishnu Murthy

For minimized t-way test suite generation (t indicates more strength of interaction) recently many meta-heuristic, hybrid and hyper-heuristic algorithms are proposed which includes Artificial Bee Colony (ABC), Ant Colony Optimization (ACO), Genetic Algorithms (GA), Simulated Annealing (SA), Cuckoo Search (CS), Harmony Elements Algorithm (HE), Exponential Monte Carlo with counter (EMCQ), Particle Swarm Optimization (PSO), and Choice Function (CF). Although useful strategies are required specific domain knowledge to allow effective tuning before good quality solutions can be obtained. In our proposed technique test cases are optimized by utilizing Improved Cuckoo Algorithm (ICSA). At that point, the advanced experiments are organized or prioritized by utilizing Particle Swarm Optimization algorithm (PSO). The Particle Swarm Optimization and Improved Cuckoo Algorithm (PSOICSA) estimation is a blend of Improved Cuckoo Search Algorithm(ICSA) and Particle Swarm Optimization (PSO). PSOICSA could be utilized to advance the test suite, and coordinate both ICSA and PSO for a superior outcome, when contrasted with their individual execution as far as experiment improvement. 


2013 ◽  
Vol 303-306 ◽  
pp. 403-406 ◽  
Author(s):  
Jin Jie Yao ◽  
Jing Yang ◽  
Jian Li ◽  
Li Ming Wang ◽  
Yan Han

Quantum-behaved particle swarm optimization algorithm (QPSO) was proposed as a kind of swarm intelligence, which outperformed standard particle swarm optimization algorithm (PSO) in search ability. This paper presents an improved QPSO with nonlinear controlled parameter according to the fitness value of the particles. Simultaneously, we apply the improved QPSO to solve the problems of target position measurement. The experimental results show that the improved QPSO has faster convergence speed, higher measurement accuracy, and good localization performance.


2010 ◽  
Vol 129-131 ◽  
pp. 612-616
Author(s):  
Jin Rong Zhu

In this paper, an adaptive particle swarm optimization algorithm based on cloud model (C-APSO) is proposed. In the suggested method, the velocities of the all particles are adjusted based on the strategy that a particle whose fitness value is nearer to the optimal particle will fly with smaller velocity. Considering the properties of randomness and stable tendency of a normal cloud model, a Y-conditional normal cloud generator is used to gain the inertial factors of the particles. The simulations of function optimization show that the proposed method has advantage of global convergence property and can effectively alleviate the problem of premature convergence.


2011 ◽  
Vol 460-461 ◽  
pp. 512-517
Author(s):  
De Jia Shi ◽  
Wei Jin Jiang ◽  
Xiao Ling Ding

A novel multi-agent particle swarm optimization algorithm (MAI'SO) is proposed for optimal reactive power dispatch and voltage control of power system. The method integrates multi-agent system (MAS) and particle swarm optimization algorithm (PSO). An agent in MAI.SO represents a particle to PSO and a candidate solution to the optimization problem. All agents live in a lattice-like environment, with each agent fixed on a lattice-point. In order to decrease fitness value, quickly, agents compete and cooperate with their neighbors. and they can also use knowledge. Making use of these agent interactions and evolution mechanism of I.SO. MAPSO realizes the purpose of' minimizing the value of' objective function. MAPSO applied for optimal reactive power is evaluated on an IEEE 30-bus power system. It is shown that the proposed approach converges to better solutions much faster than the earlier reported approaches


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Jinchao Li ◽  
Jinying Li ◽  
Dongxiao Niu ◽  
Yunna Wu

A parallel adaptive particle swarm optimization algorithm (PAPSO) is proposed for economic/environmental power dispatch, which can overcome the premature characteristic, the slow-speed convergence in the late evolutionary phase, and lacking good direction in particles’ evolutionary process. A search population is randomly divided into several subpopulations. Then for each subpopulation, the optimal solution is searched synchronously using the proposed method, and thus parallel computing is realized. To avoid converging to a local optimum, a crossover operator is introduced to exchange the information among the subpopulations and the diversity of population is sustained simultaneously. Simulation results show that the proposed algorithm can effectively solve the economic/environmental operation problem of hydropower generating units. Performance comparisons show that the solution from the proposed method is better than those from the conventional particle swarm algorithm and other optimization algorithms.


Sign in / Sign up

Export Citation Format

Share Document