Performance Analysis of Supercritical Organic Rankine Cycles

2013 ◽  
Vol 781-784 ◽  
pp. 2411-2414
Author(s):  
Jian Qiang Gao ◽  
Xin Sun ◽  
Nan Nan Xue ◽  
Hai Kun Xing

Supercritical Rankine cycles using organic fluids as working fluids in converting low-grade energy to high-grade power energy are investigated in the study. The main purpose is to identify suitable working fluids which may yield high system efficiencies in a supercritical Organic Rankine Cycle (ORC) system. R123, R134a, R152a, R22, and R245fa are used for the research. Results show that: at a constant superheating of expansion outlet, system efficiency improves with the increasing of evaporation pressure for all the working fluids and supercritical ORC has a higher efficiency than sub-ORC process. Furthermore, R152a performs the best compared with other refrigerants and is suitable for SORC system.

2012 ◽  
Vol 557-559 ◽  
pp. 1509-1513 ◽  
Author(s):  
Zhong He Han ◽  
Yi Da Yu

A Rankine cycle using organic fluids as working fluids, called organic Rankine cycle (ORC), is potentially feasible in recovering low enthalpy containing heat sources. The choices of fluids should meet the requirement of environment, safety, critical pressure and critical temperature etc. Under the proposed working conditions, R600a, R245fa, R236fa, R236ea, R227ea are chosen as the working fluids of the low-temperature Rankine cycle system, then those fluids are investigated and compared from cycle efficiency, work ratio, exergy efficiency, irreversible loss. The results show that R245fa is an available and effective working fluid for low-temperature Rankine cycle.


2013 ◽  
Vol 805-806 ◽  
pp. 649-653
Author(s):  
Bing Zhang ◽  
Shuang Yang ◽  
Jin Liang Xu ◽  
Guang Lin Liu

The optimum working conditions of 11 working fluids under different heat source temperatures for an organic Rankine cycle (ORC) were located in our previous work. In the current work, the system irreversibility of each candidate were calculated and compared at their optimal operating conditions. Obvious variation trends of both the cycle efficiency and irreversibility were found for different types of organic fluids. It is suggested, when selecting working fluid for our ORC system, the critical temperature should be as close as possible to the heat source temperature to achieve high cycle efficiency but avoid large irreversibility. The relationships between the structure of the molecules and the critical temperature of the working fluids are investigated qualitatively and potentially meaningful for the rational selection of proper organic fluids for certain ORCs.


2013 ◽  
Vol 448-453 ◽  
pp. 3270-3276
Author(s):  
Yu Ping Wang ◽  
Yi Wu Weng ◽  
Ping Yang ◽  
Lei Tang

In this paper, three typical working fluids were selected for the near-critical ORC and subcritical ORC. The difference of performance between the near-critical ORC and subcritical ORC was analyzed by establishing the thermodynamic model. The reason for difference was analyzed in terms of the thermophysical properties. The results indicate that the performance of the near-critical ORC is better than the subcritical ORC. The net absorbed heat, net power and efficiency of the near-critical ORC vary slowly with the vapor generation temperature, which means that the near-critical ORC has good off-design performance. The dry working fluid R236fa is best adapted for the near-critical ORC among the three working fluids. The singular performance of the near-critical ORC depends on the properties of latent heat and type of working fluid in near-critical region.


Author(s):  
Eydhah Almatrafi ◽  
Francesca Moloney ◽  
D. Y. Goswami

Power and freshwater demand are increasing as populations around the world keep growing. Due to the environmental impact of using fossil fuels and limited resources, using solar thermal in desalination application is a valuable option. In this paper, an innovative new design of low temperature multi-effect desalination coupled with mechanical vapor compression (LT-MED-MVC) powered by supercritical organic Rankine cycle utilizing a low-grade solar heat source using evacuated tube collectors is analyzed. The proposed design has the potential to desalinate water of high salt concentrations or brine with high salinity more than 100,000 ppm or effluent streams from a power plant with low energy consumption and high efficiency when compared to the previously discussed systems. The performance of the LT-MED-MVC was found to be better than similar systems found in the literature. The specific power consumption for MVC is lower than 4 kWh/m3 for seawater feed salinity of 100,000 ppm, 14 forward feed effects, and a recovery rate of 50%. The overall system efficiency is about 14%. The impact of increasing the number of effects, motive steam temperature, pressure of supercritical-ORC and salt concentration on the specific power consumption, solar collector area, and the system efficiency are also analyzed.


2017 ◽  
Author(s):  
Edwin Santiago Rios Escalante ◽  
João Andrade Carvalho Júnior ◽  
José Antônio Perrella Balestieri

Sign in / Sign up

Export Citation Format

Share Document