Determination of Fourteen Sulfonamides Residues in Penaeus vannamei by High Performance Liquid Chromatography Coupled with Post-Column Derivation

2013 ◽  
Vol 781-784 ◽  
pp. 903-907
Author(s):  
Dong Mei Huang ◽  
Jie Xu ◽  
Yong Fu Shi ◽  
Xuan Yun Huang ◽  
Huan Yu ◽  
...  

The method was established to detect fourteen sulfonamides residuces in Penaeus vannamei by high performance liquid chromatography coupled with post-column derivation. Sulfonamides residues were extracted with ethyl acetate after adding sulfapyridine as internal standard. The extract was concentrated.The residues were transferred to hydrochloric acid solution. The solution was defatted with n-hexane. The compounds were detected by HPLC with fluorescence detector .The standard addition method was used. The calibration curves were linear. The recoveries ranged from 77.8% to 103.6%. The relative standard deviations were all below 9.1%. Quantitative detection limits of fourteen sulfanomides ranged from1.0μg/kg to 5.0μg/kg. Results indicated that the method was easier, faster and more accurate.

Author(s):  
Huyen Trang Luu Thi ◽  
Trang Vu Thi ◽  
Ngan Le Viet ◽  
◽  
◽  
...  

High performance liquid chromatography was applied for the determination of tryptophan in food. The sample was hydrolyzed in a duration from 16 to 24 hour by protease enzyme at 50 oC. The extract was separated on the C8 reversed phase column with mobile phase of NaH2PO4 50mM pH 2.3: Methanol (82:18; v/v). The linearity of the method was kept in the range of 0.5 - 50 mg/L. Limit of detection was found to be 4.6 mg/100g. Recovery was determined by standard addition method, giving values of recovery in the range of 97 - 103% and RSD (n = 6) in the range of 0.077 - 2.27%. Internal standard was used to reduce the errors in analysis process and good reproducibility.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
John Teye Azietaku ◽  
Xie-an Yu ◽  
Jin Li ◽  
Jia Hao ◽  
Jun Cao ◽  
...  

A specific, sensitive, and reliable high performance liquid chromatography with fluorescence detection (HPLC-FLD) was first optimized and then used in the simultaneous quantification of bergapten, imperatorin, notopterol, and isoimperatorin in rat plasma using osthole as the internal standard. Liquid-liquid extraction with ethyl acetate was employed in treating the rat plasma samples obtained. Separation was carried out with a Hedera™ ODS column (4.6 × 250 mm, 5 μm) by gradient elution at a temperature of 40°C. Excitation and emission of the fluorescence detector were set to 300 and 490 nm, respectively. The lower limits of quantification for bergapten, imperatorin, notopterol, and isoimperatorin in rat plasma were 4, 40, 4, and 2 ng mL−1, respectively. The intraday and interday precision and accuracy for the four coumarins were within acceptable criteria. The recovery of the method was satisfactory with a range of 80.3–114%. The validated method was successfully used for the simultaneous determination of the four coumarins in Notopterygium incisum extracts and also for the pharmacokinetic and excretion study of bergapten, imperatorin, notopterol, and isoimperatorin in rats.


2013 ◽  
Vol 781-784 ◽  
pp. 942-946 ◽  
Author(s):  
Jian Chao Deng ◽  
Xian Qing Yang ◽  
Lai Hao Li ◽  
Jian Wei Cen ◽  
Shu Xian Hao ◽  
...  

A new method of determination of malachite green (MG) in sediment has been developed by high performance liquid chromatography with fluorescence detection (HPLC-FLD). It is based on use of a deoxidation reaction which converts malachite green (MG) into LMG in the process of extraction. The sediment samples were extracted with a solution of formic acid and acetonitrile. Clean up and isolation was performed on MCX solid phase extraction (SPE) column. Chromatographic separation was achieved by using C18column with an isocratic mobile phase consisting of acetonitrile and ammonium acetate buffer (0.05 M, pH 4.5) (80:20, v/v). High performance liquid chromatography with fluorescence detector (λex=265 nm and λem=360 nm) was used for the determination of LMG. The recovery values of MG in sediment samples fortified with MG were determined by measuring the amount of MG in the samples, after carrying out deoxidation reaction with potassium borohydride, which converts the MG into LMG. Under the optimized conditions, the average recoveries of MG from sediment at three levels (1.0, 10 and 50 μg/kg) were 85.0% (range from 80.8 to 87.6%). Relative standard deviations (RSD) of recoveries at all fortification levels were less than for 9.57% for MG. The method detection limit obtained for MG was 0.5 μg/kg.


2015 ◽  
Vol 7 (7) ◽  
pp. 3028-3035 ◽  
Author(s):  
Muzaffar Iqbal ◽  
Nasr Y. Khalil ◽  
Amer M. Alanazi ◽  
Khalid A. Al-Rashood

Simple and sensitive HPLC assay for accurate quantification of canagliflozin in human plasma using telmisartan as the internal standard.


2020 ◽  
Vol 16 ◽  
Author(s):  
Yun-Yan Xia ◽  
Qiao-Gen Zou ◽  
Yu-Fei Yang ◽  
Qian Sun ◽  
Cheng-Qun Han

Background: High-performance liquid chromatography (HPLC) method has been used to detect related impurities of perampanel. However, the detection of impurities is incomplete, and the limits of quantification and detection are high. A sensitive, reliable method is in badly to be developed and applied for impurity detection of perampanel bulk drug. Objective: Methodologies utilising HPLC and gas chromatography (GC) were established and validated for quantitative determination of perampanel and its related impurities (a total of 10 impurities including 2 genotoxic impurities). Methods: The separation was achieved on a Dikma Diamonsil C18 column (250 mm × 4.6 mm, 5 μm) with the mobile phase of 0.01 mol/L potassium dihydrogen phosphate solution (A) and acetonitrile (B) in gradient elution mode. The compound 2-bromopropane was determined on an Agilent DB-624 column (0.32 mm × 30 m, 1.8 μm) by electron capture detector (μ-ECD) with split injection ratio of 1:5 and proper gradient temperature program. Result: Both HPLC and GC methods were established and validated to be sensitive, accurate and robust according to International Council for Harmonization (ICH) guidelines. The methods developed were linear in the selected concentration range (R 2≥0.9944). The average recovery of all impurities was between 92.6% and 103.3%. The possible production mechanism of impurities during the synthesis and degradation processes of perampanel bulk drug was also discussed. Five impurities were analyzed by liquid chromatography–mass spectrometry (LC-MS). Moreover, two of them were simultaneously characterized by LC-MS, IR and NMR. Conclusion: The HPLC and GC methods were developed and optimized, which could be applied for quantitative detection of the impurities, and further stability study of perampanel.


2006 ◽  
Vol 89 (6) ◽  
pp. 1552-1556
Author(s):  
ArmaĞan Önal ◽  
Olcay SaĞiri ◽  
S Müge Çetin ◽  
Sidika Toker

Abstract Reboxetine is used as a selective noradrenaline reuptake inhibitor for the treatment of major depressive disorders. It is effective in the treatment of severe depression and safer to use than traditional tricyclic antidepressants. In this study, a novel, simple, and rapid stability-indicating high-performance liquid chromatography (HPLC) method for reboxetine methansulfonate was successfully developed and validated for the assay of tablets. The method was used to quantify reboxetine in tablets; it employed a C18 column (150 4.6 mm id) with an isocratic mobile phase consisting of methanolphosphate buffer (pH 7, 0.02 M; 55 + 45, v/v) at a flow rate of 1.0 μmL/min. Reboxetine was detected by an ultraviolet detector at 277 nm. The retention time of reboxetine was about 4.5 min. The developed HPLC method was validated with respect to linearity, precision, sensitivity, accuracy, and selectivity. The method was linear over the concentration range 150 g/mL (r 0.9999). The limits of detection and the quantitation of reboxetine were 0.1 and 0.3 μg/mL, respectively. The relative standard deviation values for intraday and interday precision were 0.781.01 and 1.081.37%, respectively. Selectivity was validated by subjecting a stock solution of reboxetine to neutral, acid, and alkali hydrolysis, as well as oxidation, dry heat treatment, and photodegradation. The peaks of the degradation products did not interfere with the peak of reboxetine. The results indicated that the proposed method could be used in a stability assay. The proposed method was successfully applied to the determination of reboxetine in tablets. Excipients present in the tablets did not interfere with the analysis.


2012 ◽  
Vol 550-553 ◽  
pp. 1173-1176
Author(s):  
Hui Qing Sun ◽  
Yi Qiang Li ◽  
Guang Jun Xu ◽  
Xiao Zhen ◽  
Jin Li Xu ◽  
...  

Abstract. [Aims] A high performance liquid chromatography (HPLC) was presented for determination of fentin acetate residue in beet and soils. [Methods] Fentin acetate was extracted from beet plants and soils with hydrochloric acid and acetonitrile, followed by a second extraction in dichloromethane, purified by acid aluminium oxide with methanol eluting, then dissolved by concentration and dilution with acetoneitrile. A HPLC with UV detection at 220 nm and a Waters Sun FireTM-C18 column, which was eluted with methanol and 0.5% phosphoric acid aqueous solution and was used based on an external standard calibration curve. [Results] The results showed that the average recoveries were 88.4-95.6% for beet plants and 91.2-91.8% for soils. The relative standard deviations were 2.0-4.5% and 4.3-5.3% respectively. The minimum detectable level was 1.6×10-10g, the lowest detectable concentration was 0.02mg/kg. [Conclusions] The method is convenient and can meet the requirement of residual analysis and also provide reference for other crops.


2013 ◽  
Vol 448-453 ◽  
pp. 406-408
Author(s):  
Jing Liu ◽  
Xiao Na Ji ◽  
Qing Kai Ren ◽  
Sheng Shu Ai ◽  
Li Jun Wan ◽  
...  

We established a method fordetermination of nitrate in water by High Performance Liquid Chromatography(HPLC). The sample was analysed by HPLC-ADA and was quantitated by externalstandard method after being simply processed. This methd has the advantages ofhigh separation efficiency and fast analysis. The experiment result showed thatthe linearly dependent coefficient was0.994, the recovery rate was between 98.7%~105.7%,the relative standard deviation(RSD)wasless than 2.1 %, and the lowest detectable limit is 0.01ng (S/N=1.6).


Sign in / Sign up

Export Citation Format

Share Document