Removal of Organic Sulfur in Two Coals in Microwave and Ultrasonic Co-Enhanced Oxidative Process

2013 ◽  
Vol 781-784 ◽  
pp. 923-926 ◽  
Author(s):  
Zhao Ting Pu ◽  
Jie Mi ◽  
Jian Kang

Microwave heating has been used in desulfurization of coal. Removal of organic sulfur and organic sulfur forms alterations of Xishan (XS) coal and Yunnan (YN) coal was investigated under microwave and ultrasonic irradiation. The results showed the optimum conditions for desulfurization were 50 min and 560 W for microwave and ultrasound for both coals. The desulfurization rate was maximum 23.53% for XS coal and 76.58% for YN coal. The effect of combining microwave and ultrasonic irradiation on desulfurization was stronger than simple microwave irradiation. The content of sulphone sulfur in coal was increased from the XPS after microwave and ultrasonic co-enhanced oxidative desulfurization.

2011 ◽  
Vol 71-78 ◽  
pp. 2122-2126 ◽  
Author(s):  
Jie Mi ◽  
Rui Di Wei

In this paper, the desulfurization of Fangshan coal was carried out by tetrachloroethylene extraction under ultrasonic and microwave irradiation. The GC-MS analysis of the tetrachloroethylene extraction reveals that organic sulfur in coal can be removed by tetrachloroethylene extract under ultrasonic and microwave irradiation. It is found that microwave irradiation time has great effect on organic sulfur removal. With the microwave irradiation time increases, the efficiency of organic sulfur removal increases. The desulphurization yield reaches maximum, 45%, when the time is 30 minutes or more. It can be clearly seen that Fangshan coal was oxidated by peroxyacetic acid under ultrasonic and microwave irradiation. From the XPS analysis of the macerals of the coal, most of the inorganic sulfur and organic sulfur are removed, especially thioether and thioalcohol which can be completely removed. These results suggest that microwave is an effective way to remove sulfur in coal.


2012 ◽  
Vol 512-515 ◽  
pp. 2494-2499 ◽  
Author(s):  
Jie Mi ◽  
Jian Kang

In this paper, the desulfurization of LA (Lu,an) coal was carried out by combining the method of ultrasonic and microwave irradiation. The effect of microwave time and combination of ultrasonic and microwave irradiation on the desulfurization of LA coal was investigated. The results showed that the sulfur removal effect of microwave irradiation time is obvious. The removal rate of organic sulfur increased with the microwave irradiation time increased. The effect of ultrasonic before microwave irradiation on desulfurization was greater than simply microwave method. The sulphur form was investigated systematically using X-ray photoelectron spectroscopy (XPS). After microwave and ultrasonic co-enhanced oxidative desulfurization of coal, the content of sulfur in coal was decreased by the XPS analysis.


Author(s):  
Mahesh G. Kharatmol ◽  
Deepali Jagdale

Pyrazoline class of compounds serve as better moieties for an array of treatments, they have antibacterial, antifungal, antiinflammatory, antipyretic, diuretic, cardiovascular activities. Apart from these they also have anticancer activities. So, pertaining to its importance, many attempts are made to synthesize pyrazolines. Since conventional methods of organic synthesis are energy and time consuming. There are elaborate pathways for green and eco-friendly synthesis of pyrazoline derivatives including microwave irradiation, ultrasonic irradiation, grinding and use of ionic liquids which assures the synthesis of the same within much lesser time and by use of minimal energy


RSC Advances ◽  
2021 ◽  
Vol 11 (45) ◽  
pp. 28061-28071
Author(s):  
Kesatebrhan Haile Asressu ◽  
Chieh-Kai Chan ◽  
Cheng-Chung Wang

Trisubstituted imidazoles are synthesized efficiently from the readily available 1,2-diketones and aldehydes using hexamethyldisilazane as a new and stable nitrogen source under TMSOTf-catalysis system, microwave heating and solvent-free conditions.


2014 ◽  
Vol 1033-1034 ◽  
pp. 85-89 ◽  
Author(s):  
Guo Xian Yu ◽  
Qian Zhong ◽  
Mei Jin ◽  
Ping Lu

Ultrasound-assisted oxidative desulfurization (UAODS) of diesel fuel in H2O2/Heteropoly acid/Solvent systems, was investigated. Effects of solvent, catalyst, ultrasound and reaction temperature on the oxidation desulfurization of diesel fuel were investigated. When MPA/oil was 2%wt, methanol/diesel fuel was 20%wt, ultrasound power was 400 W and ultrasound time was 10 min, the sulfur content of diesel fuel was decreased from 211 ppm to 19 ppm. The use of ultrasonic irradiation in H2O2/Heteropoly acid/Solvent system significantly improved the efficiency of the oxidation reaction, and solvent was helpful to make the oxidative reaction happen in the same one phase.


2018 ◽  
Vol 78 (5) ◽  
pp. 1159-1167 ◽  
Author(s):  
Behnam Heidari ◽  
Mohsen Soleimani ◽  
Nourollah Mirghaffari

Abstract The Fenton process is a useful and inexpensive type of advanced oxidation process for industrial wastewater treatment. This study was performed with the aim of using the steel slag as a catalyst in the heterogeneous Fenton process in order to reduce the chemical oxygen demand (COD) of oil refinery wastewater. The effects of various parameters including the reaction time (0.5, 1.0, 2.0, 3.0 and 4.0 h), pH (2.0, 3.0, 4.0, 5.0, 6.0 and 7.0), the concentration of steel slag (12.5, 25.0 and 37.5 g/L), and H2O2 concentration (100, 250, 400 and 500 mg/L) on the Fenton process were investigated. Furthermore, the effect of microwave irradiation on the process efficiency was studied by considering the optimum conditions of the mentioned parameters. The results showed that using 25.0 g/L of steel slag and 250 mg/L H2O2, at pH = 3.0, could reduce COD by up to 64% after 2.0 h. Also, microwave irradiation decreased the time of the process from 120 min to 25 min in the optimum conditions, but it consumed a high amount of energy. It could be concluded that steel slags had a high potential in the treatment of oil refinery wastewater through the Fenton process.


Sign in / Sign up

Export Citation Format

Share Document