Catalytic Reaction-Nanogold Resonance Rayleigh Scattering Method for the Determination of Trace Tellurium

2013 ◽  
Vol 787 ◽  
pp. 392-395
Author(s):  
Qing Zeng ◽  
Ai Hui Liang ◽  
Wen Qing Yin ◽  
Zhi Liang Jiang

In 6 mol/L HCl medium, TeO42-is reduced by NaH2PO2to Te that catalyze NaH2PO2reducing HAuCl4to form gold nanoparticles (AuNPs), which exhibited a strong resonance Rayleigh scattering (RRS) peak at 370 nm. With the TeO42-concentration increased, the catalytic reaction enhanced and formed more AuNPs that resulting in the RRS peak increased. Under the chosen conditions, the RRS intensity at 370 nm enhanced linearly with the concentration of TeO42-in the range of 12.5-287.5 nmol/L. This RRS method was sensitivity, selectivity, and simplicity.

2013 ◽  
Vol 734-737 ◽  
pp. 2426-2429
Author(s):  
Jing Peng ◽  
Cai Na Jiang ◽  
Ling Ling Ye ◽  
Ai Hui Liang

In 6 mol/L HCl medium, NaH2PO2reduced HAuCl4to generate gold nanoparticles (AuNPs). AuNPs have a strong resonance Rayleigh scattering (RRS) peak at 369 nm. As HAuCl4concentration increases in 0.04-0.8 mmol/L, the AuNPs generated increase, and the RRS peak ΔI369nmenhanced linearly, the linear regression equation wasΔI369nm= 5122CAu+13.2, linear correlation coefficient was 0.9968. This method has the advantages of high sensitivity, good selectivity, easy to operate.


2013 ◽  
Vol 788 ◽  
pp. 23-26
Author(s):  
Gui Qing Wen ◽  
Ai Hui Liang

In HCl medium and in the presence of CuSO4, Na3AsO4 can be reduced by NaH2PO2 to form As nanoparticles (AsNs) which exhibited a strong resonance Rayleigh scattering (RRS) peak at 370 nm. Under the chosen conditions, the increased intensity at 370 nm was linear to As5+ concentration in the range of 0.48-38.0×10-6 mol/L, with a regression equation of ΔI370nm = 82.3 CAs + 33.9, a correlation coefficient of 0.9878 and a detection limit of 2.0×10-7 mol/L As5+. The proposed method was applied to detect As5+ concentration in waste water, with simplicity, rapidity and accuracy. Thus, a novel RRS spectral method was established to determine As5+.


2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Shengmian Wang ◽  
Guiqing Wen ◽  
Tingsheng Li ◽  
Xianjiu Liao ◽  
Aihui Liang ◽  
...  

In the HCl medium, rhenium (VII) or Re nanoparticles exhibited strong catalytic effect on the slow Te particle reaction between Te(VI) and Sn(II) at 70°C. The product of formed Te particles shows two strong resonance Rayleigh scattering peaks at 778 nm and 540 nm. The RS intensity at 778 nm enhanced linearly with Re concentration. The enhanced RS intensity was linear Re concentration in the range of 0.01–2.0 nmol·L−1, with a detection limit of 0.005 nmol·L−1Re. This method was applied to the analysis of Re in ore sample, and the results were in agreement with that of the spectrophotometry.


2010 ◽  
Vol 20 (12) ◽  
pp. 1552-1556 ◽  
Author(s):  
Li Fan ◽  
Shao-Pu Liu ◽  
Da-Cheng Yang ◽  
Xiao-Li Hu

2013 ◽  
Vol 787 ◽  
pp. 400-403
Author(s):  
Jin Chao Dong ◽  
Ai Hui Liang ◽  
Zhi Liang Jiang

Hemin aptamer was used to modify gold nanoparticles (AuNPs) to obtain a stable aptamer-nanogold probe (AussDNA). In the condition of pH 8.0 Tris-HCl buffer solution containing 50mmol/L NaCl, the substrate chain of AussDNA was cracked by hemin to produce a short single-stranded DNA(ssDNA) and then further combined with hemin to form a stable hemin-ssDNA conjugate. The AuNPs released from AussDNA would be aggregated in the condition of 50mmol/L NaCl and exhibited a strong resonance Rayleigh scattering (RRS) peak at 368nm. Under the selected conditions, the increased RRS intensity (ΔI368nm) was linear to hemin concentration in the range of 5-750nmol/L, with a detection limit of 66 pmol/L. This RRS method was applied to determination of residual hemin in serum samples, with satisfactory results. The remnant AussDNA in the solution exhibited a strong catalytic activity on the gold particle reaction of HAuCl4-vitamine C (VC) that can be monitored by RRS technique at 368 nm. When the hemin concentration increased, the AussDNA decreased, the catalysis decreased, and the RRS intensity at 368nm decreased. The decreased RRS intensity ΔI368nmwas linear to the hemin concentration in the range of 1-200nmol/L, with a detection limit of 54 pmol/L. Accordingly, a sensitivity, selectivity, and simplicity new method of resonance Rayleigh scattering spectra to detect hemin using aptamer-modified nanogold as catalyst was established.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Haidong Wang ◽  
Chongning Li ◽  
Yanghe Luo ◽  
Zhiliang Jiang

The gold nanoparticle reaction of HAuCl4-H2O2 was very slow under 60°C, and the as-prepared graphene oxide nanoribbons (GONRs) exhibited strong catalysis of the reaction to form gold nanoparticles (AuNP) that appeared a resonance Rayleigh scattering (RRS) peak at 550 nm. Upon addition of potassium pyroantimonate (PA) ligand, it was adsorbed on the GONRs surface to inhibit the catalysis to cause the RRS peak decreasing. When the analyte of Na+ was added, the coordination reaction between PA and Na+ took place to form the stable complexes of [Na2(PA)] to release free GONRs catalyst that resulted in the RRS peak increasing linearly. Accordingly, a new and sensitive RRS method for Na+ was established, with a linear range of 0.69-25.8 nmol/L and a detection limit of 0.35 nmol/L Na+.


Sign in / Sign up

Export Citation Format

Share Document