The Improvement of Durability of Marine Wood with Polymer and its Mechanism

2009 ◽  
Vol 79-82 ◽  
pp. 1021-1024 ◽  
Author(s):  
Yong Feng Li ◽  
Yi Xing Liu ◽  
Xiang Ming Wang ◽  
Xiu Rong Li

In order to improve the durability of marine wood against the long-term marine corrosion, the study explores to use two bifunctional reagents, maleic anhydride (Man) and glycidyl methacrylate(GMA), to react with wood by impregnating them into the porous structure of wood and further initiating them to polymerize with an initiator, AIBN, through a heat process. After the above modification, the durability of the marine wood treated with polymer was tested, and its mechanism was further analyzed as well. The testing results of the durability show that the acid resistance, the alkali resistance, the decay resistance against marine borers and the dimensional stability of the treated wood increases by 2.02 times, 12.39 times, 4.96 times and 3 times over untreated wood, respectively; and its Anti Swelling Efficiency (ASE) for dimensional stability reaches 53%, which almost equals the value of the wood treated by PEG-1500 under the same condition, while its leachability resistance is greatly higher than wood treated by PEG-1500. The analysis result with FTIR indicates that Man and GMA both react with wood, and Man reacts with the hydroxyl group of wood cell walls by its anhydride group, and GMA polymerizes in the porous structure of wood. The charactering result with SEM reveals that the resultant polymer fills in wood cell lumina as a solid form, which contacts tightly the wood cell walls without obvious gaps. The greatly reducing amount of hydroxyl groups after the reaction and the heavy jamming channels for water and marine borers approaching to wood cell walls both contribute to the improving durability of the modified wood.

2011 ◽  
Vol 675-677 ◽  
pp. 495-498
Author(s):  
Yong Feng Li ◽  
Yi Xing Liu ◽  
Yun Lin Fu ◽  
Qing Lin Wu ◽  
Xiang Ming Wang

Bio-based materials such as wood, bamboo, bio-straw material are vulnerable to degradation by microorganisms and susceptible to change in dimension under humidity, which greatly reduced their service life. In this study, a novel thought was inspired from the unique porous structure of bio-based material that durability of wood may be capable of being improved by generating polymer in situ the special structure. Maleic anhydride (Man) and Styrene (St) were used to penetrate into wood for further copolymerization. SEM observation shows that polymer filled in wood porous structure and tightly contacted wood matrix (i.e. biopolymers), indicating strong interaction between them. FTIR analysis indicates that polymer chemically grafted onto wood matrix by reaction of anhydride group and hydroxyl group. As the amount of hydroxyl groups greatly reduced for their reacting with polymer, the dimensional stability of wood immersing in water was improved; and as the reaction of wood with polymer, the biopolymers were wrapped by resultant polymer, preventing the sample from attack of microorganisms, thus decay resistance of treated wood against microorganisms was greatly improved. Both of them contributed to the improvement of wood durability.


2009 ◽  
Vol 87-88 ◽  
pp. 456-461 ◽  
Author(s):  
Yong Feng Li ◽  
Yi Xing Liu ◽  
Jiang Tao Shi ◽  
Gang Li

In order to prepare a wood-based composite material which, as a type of multifunctional and natural bio-based material, possesses satisfactory mechanical properties, excellent durability (i.e., decay resistance and dimensional stability), and Aenvironmental characteristic, the study presents a new method which is based on the cellular structure of wood by initiating polymerizable monomers for in situ polymerization. Glycidyl methacrylate (GMA) as a multifunctional and polymerizable monomer was chosen, and impregnated into the porous structure of wood. After a thermal-catalyst process, the wood-based composite, PGMA/Wood, was prepared. The structure of this material was analyzed by SEM, FTIR and XRD; and its performance was also determined. The analyzing results show that GMA not only polymerized in the cellular structure in a solid form and amorphous form, which fully and uniformly filled in wood cell lumen, but also sufficiently grafted onto wood cell walls in a chemical level, resulting in tight contact between wood cell walls and resultant polymers (PGMA) without any obvious cracks. The test results of mechanical properties show that the modulus of rupture (MOR), modulus of elasticity (MOE), compression strength, and hardness of PGMA/Wood increased by 82%, 122%, 139%, and 348% over those of untreated wood, respectively. The test results of durability show that the dimensional stability and decay resistance of PGMA/Wood improved 44% and 91% than those of untreated wood, respectively. Such composite could be widely applied in the fields of construction, furniture and traffic.


2009 ◽  
Vol 79-82 ◽  
pp. 1527-1530
Author(s):  
Yong Feng Li ◽  
Yi Xing Liu ◽  
Hai Peng Yu ◽  
Wen Shuai Chen

Wood as a porous structure has weak durability and unsatisfactory mechanical properties which limits its utilization. For this reason, the study presents a two-step method to prepare a new modified wood material—Wood Polymer Composite. Maleic anhydride(Man) firstly penetrates into the porous structure of wood, followed by a reaction with wood cell walls. Then, Styrene(St) with some Man and a few amount of initiator, AIBN, permeate through the whole wood and react with the above modified wood. The structural characterization of wood polymer composite with SEM and FTIR indicates that Man reacts successfully with the hydroxyl group of wood cell wall by its anhydride group, and further reacts fully with styrene as a free radical copolymerization form by its double bond; and thus the polymer fills in wood cell lumina as a solid form, which combines the wood cell walls without any evident crack. The testing results of properties show that the mechanical properties of wood polymer composite increase by about 50%-250% over those of unmodified wood, and its durability improve 1.9-4.89 times than untreated wood.


Holzforschung ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Lukas Emmerich ◽  
Maja Bleckmann ◽  
Sarah Strohbusch ◽  
Christian Brischke ◽  
Susanne Bollmus ◽  
...  

Abstract Chemical wood modification has been used to modify wood and improve its decay resistance. However, the mode of protective action is still not fully understood. Occasionally, outdoor products made from chemically modified timber (CMT) show internal decay while their outer shell remains intact. Hence, it was hypothesized that wood decay fungi may grow through CMT without losing their capability to degrade non-modified wood. This study aimed at developing a laboratory test set-up to investigate (1) whether decay fungi grow through CMT and (2) retain their ability to degrade non-modified wood. Acetylated and 1,3-dimethylol-4,5-dihydroxyethyleneurea (DMDHEU) treated wood were used in decay tests with modified ‘mantle specimens’ and untreated ‘core dowels’. It became evident that white rot (Trametes versicolor), brown rot (Coniophora puteana) and soft rot fungi can grow through CMT without losing their ability to degrade untreated wood. Consequently, full volume impregnation of wood with the modifying agent is required to achieve complete protection of wooden products. In decay tests with DMDHEU treated specimens, significant amounts of apparently non-fixated DMDHEU were translocated from modified mantle specimens to untreated wood cores. A diffusion-driven transport of nitrogen and DMDHEU seemed to be responsible for mass translocation during decay testing.


2010 ◽  
Vol 150-151 ◽  
pp. 1-5
Author(s):  
Yong Feng Li ◽  
Chi Jiang ◽  
Duo Jun Lv ◽  
Xiao Ying Dong ◽  
Yi Xing Liu

In order to improve the value-added applications of low-quality wood, a novel Wood-Polymer Composite was fabricated by in-situ synthesis of copolymer from monomers within wood porous structure. The structure was characterized with SEM and FTIR, and its dimensional stability was also tested. The SEM observations showed that copolymer filled up wood pores and contact tightly with wood matrix, indicating strong interactions between them. FTIR analysis indicated that when the monomers copolymerized in situ wood porous structure, they also reacted with wood matrix by reaction of hydroxyl groups and ester groups, indicating chemical bond between the two phases, which is agreement with SEM observations. The volume swelling efficiency and contact angle of such composite were higher than those of wood, respectively, indicating good dimensional stability involving volume swelling efficiency and contact angle. Such composite could be potentially applied in fields of construction, traffic and indoor decoration.


2010 ◽  
Vol 34-35 ◽  
pp. 1165-1169 ◽  
Author(s):  
Yong Feng Li ◽  
Bao Gang Wang ◽  
Qi Liang Fu ◽  
Yi Xing Liu ◽  
Xiao Ying Dong

In order to improve the value-added applications of low-quality wood, a novel composite, wood-polymer composite, was fabricated by in-situ terpolymerization of MMA, VAc and St within wood porous structure. The structure of the composite and the reaction of monomers within wood were both analyzed by SEM and FTIR, and the mechanical properties were also evaluated. The SEM observation showed that the polymer mainly filled up wood pores, suggesting good polymerizating crafts. The FTIR results indicated that under the employed crafts, three monomers terpolymerized in wood porous structure, and grafted onto wood matrix through reaction of ester group from monomers and hydroxyl group from wood components, suggesting chemical combination between the two phases. The mechanical properties of the wood-polymer composite involving modulus of rupture, compressive strength, wearability and hardness were improved 69%, 68%, 36% and 210% over those of untreated wood, respectively. Such method seems to be an effective way to converting low-quality wood to high-quality wood.


Holzforschung ◽  
2016 ◽  
Vol 70 (8) ◽  
pp. 793-800 ◽  
Author(s):  
Manoj Kumar Dubey ◽  
Shusheng Pang ◽  
Shakti Chauhan ◽  
John Walker

Abstract The dimensional stability and mechanical properties of radiata pine (Pinus radiata) has been investigated after thermo-mechanically compression (TMC) followed by oil heat-treatment (OHT). Wood specimens were first compressed in the radial direction then heat-treated in a linseed oil bath at 160–210°C. Spring-back percentage, water repellence efficiencies, and compression set recovery percentage were determined as indicators of dimensional stability. The resistance of treated wood against a brown rot fungi was assessed based on an accelerated laboratory fungal decay test. Strength, stiffness and hardness were determined as a function of different treatment parameters. After TMC, high compression set (39%) was achieved without any surface checks and cracks. Specimens undergoing TMC followed by OHT showed relatively less swelling and low compression set recovery under high moisture conditions. The fungal resistance of wood after TMC+OHT slightly increased compared to untreated wood and TMC wood. The mechanical properties of TMC+OHT wood were inferior to those of TMC wood.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2612
Author(s):  
Md. Rowson Ali ◽  
Ummi Hani Abdullah ◽  
Zaidon Ashaari ◽  
Norul Hisham Hamid ◽  
Lee Seng Hua

Wood is a versatile material that is used for various purposes due to its good properties, such as its aesthetic properties, acoustic properties, mechanical properties, thermal properties, etc. Its poor dimensional stability and low natural durability are the main obstacles that limit its use in mechanical applications. Therefore, modification is needed to improve these properties. The hydrothermal modification of wood exposes wood samples to elevated temperatures and pressure levels by using steam, water, or a buffer solution as the treating medium, or by using superheated steam. Abundant studies regarding hydrothermally treated wood were carried out, but the negative effect on the wood’s strength is one of the limitations. This is a method that boosts the dimensional stability and improves the decay resistance of wood with minimal decrements of the strength properties. As an ecofriendly and cost-effective method, the hydrothermal modification of wood is also a promising alternative to conventional chemical techniques for treating wood. Researchers are attracted to the hydrothermal modification process because of its unique qualities in treating wood. There are many scientific articles on the hydrothermal modification of wood, and many aspects of hydrothermal modification are summarized in review papers in this field. This paper reviews the hydrothermally modified mechanical properties of wood and their potential applications. Furthermore, this article reviews the effects of hydrothermal modification on the various properties of wood, such as the dimensional stability, chemical properties, and durability against termites and fungi. The merits and demerits of hydrothermal wood modification, the effectiveness of using different media in hydrothermal modification, and its comparison with other treating techniques are discussed.


Forests ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 586 ◽  
Author(s):  
Chia-Wei Chang ◽  
Wei-Ling Kuo ◽  
Kun-Tsung Lu

In Taiwan, it is important to maintain sustainable development of the forestry industry in order to raise the self-sufficiency of domestic timber. Japanese cedar (Cryptomeria D. Don and Formosa acacia (Acacia confusa Merr.(Leguminosae)) have abundant storage options and are the potential candidates for this purpose. Heat treatment is a new environment-friendly method used to enhance the dimensional stability and durability of wood. On treatment, a surface with new characteristics is produced because of wood component changes. Consequently, an inactivated surface and a weak boundary layer are generated, and the wettability for adhesives and coatings is reduced. Furthermore, it decreases the pH value of the wood surface, and results in delay or acceleration during the curing of adhesives. This phenomenon must be paid attention to for practical applications of heat-treated wood. Ideal heat-treated conditions of C. japonica and A. confusa woods with productive parameters such as temperature, holding time, heating rate, and thicknesses of wood were identified in our previous study. In this research work, we focus on the normal shear strength of heat-treated wood with adhesives such as urea-formaldehyde resin (UF) and polyvinyl acetate (PVAc), and the finishing performances of heat-treated wood with polyurethane (PU) and nitrocellulose lacquer (NC) coatings as well as assessing the decay-resistance of heat-treated wood. The results show that heat-treated wood had a better decay resistance than untreated wood. The mass decrease of heat-treated wood was only 1/3 or even less than the untreated wood. The normal shear strength of heat-treated wood with UF and PVAc decreased from 99% to 72% compared to the untreated wood, but the wood failure of heat-treated wood was higher than that of the untreated one. Furthermore, the adhesion and impact resistance of wood finished by PU and NC coatings showed no difference between the heat-treated wood and untreated wood. The finished heat-treated wood had a superior durability and better gloss retention and lightfastness than that of the untreated wood.


Holzforschung ◽  
2013 ◽  
Vol 67 (7) ◽  
pp. 787-793 ◽  
Author(s):  
Hisashi Miyafuji ◽  
Yoshiyuki Fujiwara

Abstract Ionic liquids (ILs) have been investigated for their potential as reagents for enhancing the fire resistance of wood. The following ILs were in focus: 1-ethyl-3-methylimidazolium bromide, 1-ethyl-3-methylimidazolium tetrafluoroborate, and 1-ethyl-3-methylimidazolium hexafluorophosphate ([C2mim][PF6]). Supposedly, these ILs do not dissolve or degrade wood components to a large extent. No morphologic changes were observed in any IL-treated wood samples, but they showed an enhanced fire resistance compared with that of untreated wood. Scanning electron microscopy and energy-dispersive X-ray analysis demonstrated that the ILs are penetrated into the cell walls. The wood treated with [C2mim][PF6] exhibited the highest fire resistance based on thermogravimetric and differential thermal analyzer studies: it was more resistant against flaming at approximately 350°C and the subsequent glowing at higher temperatures. This enhanced fire resistance was interpreted by dehydration in the presence of the ILs under observation. In general, ILs are promising reagents for improving the thermal properties of wood.


Sign in / Sign up

Export Citation Format

Share Document